921 resultados para approximation error
Resumo:
Desarrollos recientes para encajar dentro de un marco variacional la llamada Formulación Libre sugieren la posibilidad de introducir un nuevo tipo de estimador de error para cálculos por elementos finitos. Este estimador se basa en una diferencia entre ciertos funcionales multicampo, que toman el mismo valor para la solución exacta del problema. En el presente artículo, dividido en dos partes, se introduce la formulación del estimador para problemas de elasticidad y de flexión de placas según las hipótesis clásicas de Kirchhoff. Se presentan también algunos ejemplos para dar idea de los comportamientos numéricos observados.
Resumo:
This paper presents some ideas about a new neural network architecture that can be compared to a Taylor analysis when dealing with patterns. Such architecture is based on lineal activation functions with an axo-axonic architecture. A biological axo-axonic connection between two neurons is defined as the weight in a connection in given by the output of another third neuron. This idea can be implemented in the so called Enhanced Neural Networks in which two Multilayer Perceptrons are used; the first one will output the weights that the second MLP uses to computed the desired output. This kind of neural network has universal approximation properties even with lineal activation functions. There exists a clear difference between cooperative and competitive strategies. The former ones are based on the swarm colonies, in which all individuals share its knowledge about the goal in order to pass such information to other individuals to get optimum solution. The latter ones are based on genetic models, that is, individuals can die and new individuals are created combining information of alive one; or are based on molecular/celular behaviour passing information from one structure to another. A swarm-based model is applied to obtain the Neural Network, training the net with a Particle Swarm algorithm.
Resumo:
The algorithms and graphic user interface software package ?OPT-PROx? are developed to meet food engineering needs related to canned food thermal processing simulation and optimization. The adaptive random search algorithm and its modification coupled with penalty function?s approach, and the finite difference methods with cubic spline approximation are utilized by ?OPT-PROx? package (http://tomakechoice. com/optprox/index.html). The diversity of thermal food processing optimization problems with different objectives and required constraints are solvable by developed software. The geometries supported by the ?OPT-PROx? are the following: (1) cylinder, (2) rectangle, (3) sphere. The mean square error minimization principle is utilized in order to estimate the heat transfer coefficient of food to be heated under optimal condition. The developed user friendly dialogue and used numerical procedures makes the ?OPT-PROx? software useful to food scientists in research and education, as well as to engineers involved in optimization of thermal food processing.
Resumo:
Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods.
Resumo:
For centuries, earth has been used as a construction material. Nevertheless, the normative in this matter is very scattered, and the most developed countries, to carry out a construction with this material implies a variety of technical and legal problems. In this paper we review, in an international level, the normative panorama about earth constructions. It analyzes ninety one standards and regulations of countries all around the five continents. These standards represent the state of art that normalizes the earth as a construction material. In this research we analyze the international standards to earth construction, focusing on durability test (spray and drip erosion tests). It analyzes the differences between methods of test. Also we show all results about these tests in two types of compressed earth block.
Resumo:
We introduce a diffusion-based algorithm in which multiple agents cooperate to predict a common and global statevalue function by sharing local estimates and local gradient information among neighbors. Our algorithm is a fully distributed implementation of the gradient temporal difference with linear function approximation, to make it applicable to multiagent settings. Simulations illustrate the benefit of cooperation in learning, as made possible by the proposed algorithm.
Resumo:
En la vida cotidiana, los errores no solo se reconocen, sino que también nos plantean nuevas situaciones. En la “filosofía de la ciencia” se han tratado como un factor determinante para la definición y la crítica de la propia ciencia. Se pretende que a través de la solución del “problema filosófico del error” de Víctor Brochard, y de algunos episodios claves de la epistemología, reconozcamos “el error” dentro de los procesos arquitectónicos como un factor crítico y productivo en sí mismo. ABSTRACT: In everyday life, errors are not only acknowledged, but they also expose us to new situations. In the field of philosophy of science, errors have been viewed as an important factor for determining and reviewing the definition of science itself. This article proposes that: through Victor Brochard´s solution of “the philosophical problem of error” and through some key aspects in epistemology, we will be able to determine that architectural “errors” can provide us with reflective and productive insights in architecture.
Resumo:
Uno de los procesos de desarrollo más comunes para llevar a cabo un proyecto arquitectónico es el ensayo y error. Un proceso de selección de pruebas que se suele abordar de dos maneras, o bien se efectúa con el fin de ir depurando una posición más óptima, o bien sirve para explorar nuevas vías de investigación. Con el fin de profundizar en esto, el artículo presenta el análisis de dos diferentes procesos de proyecto de viviendas desarrolladas por ensayo y error, obras referenciales en la historia de la arquitectura, la Villa Stonborough de Wittgenstein y la Villa Moller de Adolf Loos. Ambas aunque pertenecientes al mismo periodo histórico, están desarrolladas de maneras muy opuestas, casi enfrentadas. De su estudio se pretende localizar los conceptos que han impulsado sus diferentes vías de producción, para poder extrapolados a otros casos similares. ABSTRACT: One of the most common processes to develop an architectonic project is the trial and error method. The process of selection of tests is usually done on two different ways. Or it is done with the goal to find out the most optimized position, or it is used to explore new ways of research. In order to investigate this item, the article shows the analysis of two different processes of housing projects that have been done by trial and error. Constructions, that are references in the history of architecture, the Villa Stonborough by Wittgenstein and the Villa Moller by Adolf Loos. Although both of them belong to the same historical period, they are developed by different ways, almost confronted. Thanks to this analysis we will attempt to localize the concepts that drove into their different way of production and then we will try to extrapolate these properties to other similar cases.
Resumo:
El propósito de esta tesis es la implementación de métodos eficientes de adaptación de mallas basados en ecuaciones adjuntas en el marco de discretizaciones de volúmenes finitos para mallas no estructuradas. La metodología basada en ecuaciones adjuntas optimiza la malla refinándola adecuadamente con el objetivo de mejorar la precisión de cálculo de un funcional de salida dado. El funcional suele ser una magnitud escalar de interés ingenieril obtenida por post-proceso de la solución, como por ejemplo, la resistencia o la sustentación aerodinámica. Usualmente, el método de adaptación adjunta está basado en una estimación a posteriori del error del funcional de salida mediante un promediado del residuo numérico con las variables adjuntas, “Dual Weighted Residual method” (DWR). Estas variables se obtienen de la solución del problema adjunto para el funcional seleccionado. El procedimiento habitual para introducir este método en códigos basados en discretizaciones de volúmenes finitos involucra la utilización de una malla auxiliar embebida obtenida por refinamiento uniforme de la malla inicial. El uso de esta malla implica un aumento significativo de los recursos computacionales (por ejemplo, en casos 3D el aumento de memoria requerida respecto a la que necesita el problema fluido inicial puede llegar a ser de un orden de magnitud). En esta tesis se propone un método alternativo basado en reformular la estimación del error del funcional en una malla auxiliar más basta y utilizar una técnica de estimación del error de truncación, denominada _ -estimation, para estimar los residuos que intervienen en el método DWR. Utilizando esta estimación del error se diseña un algoritmo de adaptación de mallas que conserva los ingredientes básicos de la adaptación adjunta estándar pero con un coste computacional asociado sensiblemente menor. La metodología de adaptación adjunta estándar y la propuesta en la tesis han sido introducidas en un código de volúmenes finitos utilizado habitualmente en la industria aeronáutica Europea. Se ha investigado la influencia de distintos parámetros numéricos que intervienen en el algoritmo. Finalmente, el método propuesto se compara con otras metodologías de adaptación de mallas y su eficiencia computacional se demuestra en una serie de casos representativos de interés aeronáutico. ABSTRACT The purpose of this thesis is the implementation of efficient grid adaptation methods based on the adjoint equations within the framework of finite volume methods (FVM) for unstructured grid solvers. The adjoint-based methodology aims at adapting grids to improve the accuracy of a functional output of interest, as for example, the aerodynamic drag or lift. The adjoint methodology is based on the a posteriori functional error estimation using the adjoint/dual-weighted residual method (DWR). In this method the error in a functional output can be directly related to local residual errors of the primal solution through the adjoint variables. These variables are obtained by solving the corresponding adjoint problem for the chosen functional. The common approach to introduce the DWR method within the FVM framework involves the use of an auxiliary embedded grid. The storage of this mesh demands high computational resources, i.e. over one order of magnitude increase in memory relative to the initial problem for 3D cases. In this thesis, an alternative methodology for adapting the grid is proposed. Specifically, the DWR approach for error estimation is re-formulated on a coarser mesh level using the _ -estimation method to approximate the truncation error. Then, an output-based adaptive algorithm is designed in such way that the basic ingredients of the standard adjoint method are retained but the computational cost is significantly reduced. The standard and the new proposed adjoint-based adaptive methodologies have been incorporated into a flow solver commonly used in the EU aeronautical industry. The influence of different numerical settings has been investigated. The proposed method has been compared against different grid adaptation approaches and the computational efficiency of the new method has been demonstrated on some representative aeronautical test cases.
Resumo:
Cambios en la presión arterial tras un beta-bloqueante.
Resumo:
Habitualmente se considera que en los inventarios forestales realizados con tecnología LiDAR no existe error de muestreo. El error en la estimación de las variables se asimila a la bondad de ajuste obtenida en la regresión que se usa para la predicción de dichas variables. Sin embargo el inventario LiDAR puede ser considerado como un muestreo en dos fases con estimador de regresión, por lo que es posible calcular el error que se comete en dicho inventario. Se presenta como aplicación el inventario de los montes de Utilidad Pública números 193 y 194 de la provincia de Soria, poblados principalmente con masas de repoblación de Pinus sylvestris. Se ha trabajado con una muestra de 50 parcelas circulares de 11 metros de radio y una densidad media de datos LiDAR de 2 puntos/m2. Para la estimación del volumen maderable (V) se ha ajustado una regresión lineal con un coeficiente de determinación R2=0,8985. Los resultados muestran que los errores obtenidos en un inventario LiDAR son sustancialmente menores que los obtenidos en un muestreo sistemático por parcelas (5,1% frente a 14.9% en el caso analizado). También se observa que se consigue un error de muestreo mínimo para la estimación del volumen cuando la regresión se realiza pixeles de tamaño igual al de la parcela de muestreo en campo y que para minimizar el error a nivel de rodal es necesario maximizar el rango de aplicación de la regresión.
Resumo:
In this paper, a fuzzy based Variable Structure Control (VSC) with guaranteed stability is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. The main contribution of this work is that, firstly, new functions for chattering reduction and error convergence without sacrificing invariant properties are proposed, which is considered the main drawback of the VSC control. Secondly, the global stability of the controlled system is guaranteed.The well known weighting parameters approach, is used in this paper to optimize local and global approximation and modeling capability of T-S fuzzy model.A one link robot is chosen as a nonlinear unstable system to evaluate the robustness, effectiveness and remarkable performance of optimization approach and the high accuracy obtained in approximating nonlinear systems in comparison with the original T-S model. Simulation results indicate the potential and generality of the algorithm. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved with the proposed FLC-VSC controller. The effectiveness of the proposed controller is proven in front of disturbances and noise effects.
Resumo:
In this paper, a fuzzy logic controller (FLC) based variable structure control (VSC) is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. New functions for chattering reduction and error convergence without sacrificing invariant properties are proposed. The main feature of the proposed method is that the switching function is added as an additional fuzzy variable and will be introduced in the premise part of the fuzzy rules; together with the state variables. In this work, a tuning of the well known weighting parameters approach is proposed to optimize local and global approximation and modelling capability of the Takagi-Sugeno (T-S) fuzzy model to improve the choice of the performance index and minimize it. The main problem encountered is that the T-S identification method can not be applied when the membership functions are overlapped by pairs. This in turn restricts the application of the T-S method because this type of membership function has been widely used in control applications. The approach developed here can be considered as a generalized version of the T-S method. An inverted pendulum mounted on a cart is chosen to evaluate the robustness, effectiveness, accuracy and remarkable performance of the proposed estimation approach in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the estimation method and the robustness of the chattering reduction algorithm. In this paper, we prove that the proposed estimation algorithm converge the very fast, thereby making it very practical to use. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved.
Resumo:
This paper contributes with a unified formulation that merges previ- ous analysis on the prediction of the performance ( value function ) of certain sequence of actions ( policy ) when an agent operates a Markov decision process with large state-space. When the states are represented by features and the value function is linearly approxi- mated, our analysis reveals a new relationship between two common cost functions used to obtain the optimal approximation. In addition, this analysis allows us to propose an efficient adaptive algorithm that provides an unbiased linear estimate. The performance of the pro- posed algorithm is illustrated by simulation, showing competitive results when compared with the state-of-the-art solutions.