916 resultados para alkali-tolerant xylanase
Resumo:
A method has been described for the preparation of protein extract from prawn waste. The process consists of extracting the protein from minced fresh prawn head and shell waste by treatment with mild alkali and neutralisation and concentration of the filtrate into a semisolid consistency. The yield of the final product is about 20% of the weight of fresh prawn waste.
Resumo:
Salt tolerance of selected cultures of Pseudomonas, Moraxella, Vibrio, Micrococcus, Acinetobacter and Flavobacteria/ Cytophaga was determined. More than 80% of the cultures belonging to each of the above genera, were capable of growth in presence of 1.5 to 3.5% salt (NaCl) and at least 25 to 30% of the cultures in each group required 1.5 to 3.5% salt for growth. 40% each of Pseudomonas and Vibrio strains and 30% each of Moraxella, Micrococcus and Flavobacteria/Cytophaga strains tolerated 10% salt. Majority of the cultures belonging to the genera Pseudomonas, Vibrio, Moraxella, Micrococcus, Acinetobacter and Flavobacteria/Cytophaga were slightly halophilic (2 to 5% salt tolerant), about 25% especially of Micrococcus spp. moderately halophilic (5 to 20% salt tolerant) and none from Pseudomonas, Vibrio, Moraxella, Acinetobacter and Flavobacteria/Cytophaga spp. extremely halophilic (20 to 32% salt tolerant).
Resumo:
Growth and survival rates of P. monodon postlarvae were examined at different temperatures, salinities, and nitrite and ammonia concentrations, using one feed level. Condition of postlarvae greatly affected the experimental results shown in some instances where very low survival rates were obtained, even for the controls. Results indicated that postlarvae from PSUB-10 and up can tolerate salinity changes of 10 to 20 ppt without prior acclimation. Survival generally appears the same for temperatures between 24 and 36 C. It appears that P. monodon postlarvae have higher temperature tolerance. Tolerance of postlarvae at the early postlarval stage is between 30 and 50 ppm of nitrate. They were more tolerant from PSUB-10 upwards. Although survival was high in runs containing nitrite, growing appears to have been affected. Postlarvae could tolerate ammonia concentrations up to about 50 ppm. At 100 ppm higher mortality rates were observed. Whether or not there was any permanent effect by nitrate and ammonia at high but apparently tolerable levels is not known.
Resumo:
A study was undertaken examining the effect of malachite green on the development and survival of the zoeae, mysis and post-larvae of Penaeus monodon. Sensitivity varied with the different larval stages; the zoeae appeared to be the least tolerant. The prophylactic potentials of malachite green in the control of Lagenidiumand Zoothamnium infesting P. monodon larvae are considered briefly. Toxicity risks may be reduced by application between ecdyses or by the removal of the dye by filtration through activated carbon.
Resumo:
Protein powders were prepared from processing waste of prawns either by mechanically squeezing the shell and freeze drying the resultant aqueous extract or by treating the shell with 0.5% sodium hydroxide, filtering it and freeze drying the filtrate. Comparative studies on the proximate composition, amino acid profile, consumer acceptability and nutritional quality of the protein powders showed that the product prepared by freeze drying of the press liquor obtained by passing the waste through a hand operated expeller is better in all aspects studied than the product prepared by mild alkali extraction.
Resumo:
Protein physicochemical properties in cultured and wild prawns (Penaeus (F.) orientalis Kishinouye, 1918) were studied and compared. Protein fractions were separated into water-soluble, salt-soluble, alkali-soluble, and stroma. The results showed that salt- and alkali-soluble proteins were slightly higher in wild prawns and water-soluble proteins were higher in cultured prawns. There were only slight differences in Ca super(2+)-ATPase, MG super(2+)-ATPase, and ATP sensitivities. The textural values of wild prawns were significantly higher than the cultured ones.
Resumo:
This study was carried out to measure the effects of a supplementary multi enzyme on growth performance , survival rate and apparent protein digestibility of rainbow trout fed some diets containing different amounts of soy bean meal. Five exprimental diets with replacement of 25, 50, 75 and 100 percent of fish meal protein by soy bean meal protein were made and 0, 500 and 1000 ppm dosages of supplementary multi enzyme had used in each of them. By the means a diet with fish meal as the only source of protein has used as the control. So this study had 13 treatments. The trouts in 89.40±4.01 gr mean weight were stocked in 39 experimental fiberglass tanks in abundance of 30 fish per any tank. These specimens fed experimental diets for 8 weeks and ten of them in each tank fed same diets which added Cr2O3 to them for one more week to measure the apparent protein digestibility in them. The results shown that supplementary multi enzyme (Avizyme) which contains Protease , Amylase and Xylanase , caused increases in growth performance , survival rate and apparent protein digestibility in trouts which fed soybean meal. Also this study shown that using 1000 ppm of Avizyme in diets which containing soybean meal had the best results and the diet which contained 39 % soybean meal with this amount of enzymes, had no significant differences by the control in any of the studied factors.
Resumo:
The Moosa Creek extends from its opening into the Persian Gulf, with some sub narrow creeks leading to it. Zangi creek is one of the main branches of Moosa creek. The creek contains numerous sources of organic pollution, including sewage outlet flows and boat waste. After establishing the Petrochemical special Economic Zone (PETZONE) in 1997 near to the Zangi Creek, the pipelines, streets and railway made it distinct from eastern and western parts of this creek. Industrial activities have released sludge and effluents in this creek along these years. A survey of the Zangi creek was performed, assessing water properties, organic pollution, and the population density, distribution and diversity of macrobenthic fauna through bi-monthly sampling from July 2006 to September 2007. Samples were collected from water near the bottom and sediment at 7 stations include 2 stations inside the distinct Zangi creek and 4 stations along a transect with 1 km distances between them in eastern free part and one reference station located at the Persian Gulf entrance to the Moosa creek. The environmental parameters such as temperature, salinity, pH, dissolved oxygen, COD, turbidity, EC and heavy metals include Hg, Cd, Pb, Ni as well as percentage silt-clay and total organic matter of the sediment were measured. The faunal population density and their distribution are discussed in relation to the environmental changes. Results showed spatial heterogeneity in faunal distribution of the Zangi creek. Nine groups of macrofauna were identified out of distinct zangi creek. Polychaets formed the dominant group (48%) followed by bivalves (13%), gastropods (10%), Decapods (2%), Tanaids (5%), and all other groups (22%). The distinct creek was heavily polluted without any macrofauna communities probably as a consequence of the high pH, COD, low salinity and heavy metals contamination specially Cd and Pb. The other stations near to the disposal site were found with macrofauna communities commonly tolerant to organic pollution, At 3 km east of the disposal site, macrofauna is comparable to the surrounded creek, whereas macrofauna still indicate environmental degradation. Farther a way, faunal density decreases and equilibrium taxa gradually replace opportunistic species, while the other stations were far from polluted area contained lower pollution and relatively healthy macrofauna. The mean biomass of macrobenthic fauna were estimated for the whole studied area. The results are considered in Minimum density and biomass in surrounded creek and maximum density and biomass in 3 km of surrounded area. Biodiversity Indices were low in surrounded creek. The Shanon-weaver information index was used to describe the spatially variations in diversity. Macrofauna density, shanon and simpson index were significantly variable between surrounded and free parts of Zangi creek (p<0.05). The numerical abundance of macrobenthose varied from 221. m-2 in polluted area to 4346 m-2 in free part of Zangi creek. The Shanon-weaver information index varied from 0.4 in distinct area to 2.9 in reference station. The physico- chemical changes between distinct and free creeks showed significant variations such as pH, salinity and EC. Salinity and EC were significantly positive correlate to macrofauna density, whereas pH and TOM percentage indicated significantly negative correlation to density. Heavy metals concentrations in sediments were higher than water samples. Concentration pattern of heavy metals in sediments and water samples were Ni>Pb>Cd>Hg. Salinity and pH were significantly correlated to metals in sediments (p<0.01). No significant correlation were found between Macrofauna density and heavy metals (p<0.05).
Resumo:
Growing of fish in cages is currently practiced in Uganda and was first introduced in northern Lake Victoria in 2010. An environment monitoring study was undertaken at Source of the Nile, a private cage fish farm, in Napoleon gulf, northern Lake Victoria. In-situ measurements of key environmental (temperature, dissolved oxygen, pH and conductivity) and biological (algae, zooplankton, macro-benthos) variables were made at three transects: Transect 1- the site with fish cages (WC); transect 2- upstream of the fish cages (USC-control) and Transect 3- downstream of the cages (DSC). Upstream and Downstream sites were located approximately 1.0 km from the fish cages. Environment parameters varied spatially and temporally but were generally within safe ranges for freshwater habitats. Higher concentrations of SRP (0.015-0.112 Mg/L) occurred at USC during February, September and at DSC in November; NO2-N (0.217- 0.042 mg/L) at USC and DSC in February and November; NH4-N (0.0054- 0.065 Mg/L) at WC and DSC in February, May and November. Algal bio-volumes were significantly higher at WC (F (2,780)=4.619; P=0.010). Zooplankton species numbers were consistently lower at WC with a significant difference compared to the control site (P=0.032). Macro-benthos abundance was consistently higher at the site with cages where mollusks and low-oxygen and pollution-tolerant chironomids were the dominant group. Higher algal biomass, concentration of low-oxygen/pollution-tolerant macro-benthos and depressed zooplankton diversity at WC suggested impacts from the fish cages on aquatic biota.
Resumo:
As a means of characterizing the diffusion parameters of fiber reinforced polymer (FRP) composites within a relatively short time frame, the potential use of short term tests on epoxy films to predict the long-term behavior is investigated. Reference is made to the literature to assess the effectiveness of Fickian and anomalous diffusion models to describe solution uptake in epoxies. The influence of differing exposure conditions on the diffusion in epoxies, in particular the effect of solution type and temperature, are explored. Experimental results, where the solution uptake in desiccated (D) or undesiccated (U) thin films of a commercially available epoxy matrix subjected to water (W), salt water (SW), or alkali concrete pore solution (CPS) at either 20 or 60°C, are also presented. It was found that the type of solution did not significantly influence the diffusion behavior at 20°C and that the mass uptake profile was anomalous. Exposure to 60°C accelerated the initial diffusion behavior and appeared to raise the level of saturation. In spite of the accelerated approach, conclusive values of uptake at saturation remained elusive even at an exposure period of 5 years. This finding questions the viability of using short-term thin film results to predict the long-term mechanical performance of FRP materials. © 2013 Wiley Periodicals, Inc.
Resumo:
Portland cement (PC) is the most widely used binder for ground improvement. However, there are significant environmental impacts associated with its production in terms of high energy consumption and CO2 emissions. Hence, the use of industrial by-products materials or new low-carbon footprint alternative cements has been encouraged. Ground granulated blastfurnace slag (GGBS), a by-product of the steel industry, has been successfully used for such an application, usually activated with an alkali such as lime or PC. In this study the use of MgO as a novel activator for GGBS in ground improvement of soft soils is addressed and its performance was compared to the above two conventional activators as well as PC alone. The GGBS:activator ratio used in this study was 9:1. A range of tests was performed at three curing periods (7, 28 and 90 days), including unconfined compressive strength (UCS), permeability and microstructure analysis. The results show that the MgO performed as the most efficient activator yielding the highest strength and the lowest permeability indicating a very high stabilisation efficiency of the system. © 2012 American Society of Civil Engineers.
Resumo:
Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light-matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light-vapour interactions on a chip. Specifically, we demonstrate light-matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime.
Resumo:
Arsenic pollution and eutrophication are both prominent issues in the aquaculture ponds of Taiwan. It is important to study the effects of arsenic on algal growth and toxin production in order to assess the ecological risk of arsenic pollution, or at least to understand naturally occurring ponds. The sensitivity of algae to arsenate has often been linked to the structural similarities between arsenate and phosphate. Thus, in this study we examined the effects of arsenate (10(-8) to 10(-4) M) on Microcystis aeruginosa TY-1 isolated from Taiwan, under two phosphate regimes. The present study showed that M. aeruginosa TY-1 was arsenate tolerant up to 10(-4) M, and that this tolerance was not affected by extracellular phosphate. However, it seems that extracellular phosphate contributed to microcystin production and leakage by M. aeruginosa in response to arsenate. Under normal phosphate conditions, total toxin yields after arsenate treatment followed a typical inverted U-shape hormesis, with a peak value of 2.25 +/- 0.06 mg L-1 in the presence of 10(-7) M arsenate, whereas 10(-8) to 10(-6) M arsenate increased leakage of similar to 75% microcystin. Under phosphate starvation, total toxin yields were not affected by arsenate, while 10(-6) and 10(-5) M arsenate stimulated microcystin leakage. It is suggested that arsenate may play a role in the process of microcystin biosynthesis and excretion. Given the arsenic concentrations in aquaculture ponds in Taiwan, arsenate favors survival of toxic M. aeruginosa in such ponds, and arsenate-stimulated microcystin production and leakage may have an impact on the food chain.
Resumo:
Both arsenic pollution and eutrophication are prominent environmental issues when considering the problem of global water pollution. It is important to reveal the effects of arsenic species on cyanobacterial growth and toxin yields to assess ecological risk of arsenic pollution or at least understand naturally occurring blooms. The sensitivity of cyanobacteria to arsenate has often been linked to the structural similarities of arsenate and phosphate. Thus, we approached the effect of arsenate with concentrations from 10(-8) to 10(-4) M on Microcystis strain PCC7806 under various phosphate regimes. The present study showed that Microcystis strain PCC7806 was arsenate tolerant up to 10(-4) M. And such tolerance was without reference to both content of intra- and extra-cellular phosphate. It seems that arsenate involved the regulation of microcystin synthesis and cellular polyphosphate contributed to microcystin production of Microcystis responding to arsenate, since there was a positive linear correlation of the cellular microcystin quota with the exposure concentration of arsenate when the cells were not preconditioned to phosphate starvation. It is presumed that arsenate could help to actively export microcystins from living Microcystis cells when preconditioned to phosphate starvation and incubated with the medium containing 1 mu M phosphate. This study firstly provided evidence that microcystin content and/or release of Microcystis might be impacted by arsenate if it exists in harmful algal blooms. (C) 2008 Wiley Periodicals, Inc. Environ Toxicol 24:97 94, 2009.
Resumo:
Scattered with numerous salt lakes and approximate to 2,700-3,200 m above sea level, the giant Qaidam inland basin on the northern Tibetan Plateau has experienced continuing aridification since the beginning of the Late Cenozoic as a result of the India-Asia plate collision and associated uplift of the Tibetan Plateau. Previous evidence of aridification comes mainly from evaporite deposits and salinity-tolerant invertebrate fossils. Vertebrate fossils were rare until recent discoveries of abundant fish. Here, we report an unusual cyprinid fish, Hsianwenia wui, gen. et sp. nov., from Pliocene lake deposits of the Qaidam Basin, characterized by an extraordinarily thick skeleton that occupied almost the entire body. Such enormous skeletal thickening, apparently leaving little room for muscles, is unknown among extant fish. However, an almost identical condition occurs in the much smaller cyprinodontid Aphanius crassicaudus (Cyprinodonyiformes), collected from evaporites exposed along the northern margins of the Mediterranean Sea during the Messinian desiccation period. H. wui and A. crassicaudus both occur in similar deposits rich in carbonates (CaCO3) and sulfates (CaSO4), indicating that both were adapted to the extreme conditions resulting from the ariclification in the two areas. The overall skeletal thickening was most likely formed through deposition of the oversaturated calcium and was apparently a normal feature of the biology and growth of these fish.