957 resultados para agricultural and horticultural pest
Resumo:
The present survey of species diversity of cultivated plants is the first for Syria. Some cultivated species will be added in the future, because due to the civil war in Syria, it was not possible to visit the country in the frame of the present work, as initially planned. Checklists proved to be a useful tool for overviewing the cultivated plants of selected areas and allow a characterization of the state of plant genetic resources of Syria. Syria has experienced several civilizations. Man settled in this productive land since ancient times and used its resources. However, such use has led to changes in vegetation and decline of wildlife through the country, in seashore areas, interior, mountains, and grassland. Plant domestication and growing started more than 10,000 years ago in West Asia. Since then, plentiful of economic plant species were present and used by man and his domesticated animals. Forming a part of the Fertile Crescent, where many of the world’s agricultural plants have evolved, Syria is extremely rich in agrobiodiversity. Wild progenitors of wheat and barley and wild relatives of many fruit trees such as almonds and pistachio as well as forage species are still found in marginal lands and less disturbed areas. These are threatened by a wide range of human activities, notably modern, extensive agriculture, overgrazing, overcutting and urban expansion. Syria is also considered as part of one of the main centres of origin, according to Vavilov, who had collected in Syria in 1926. The first expeditions to crop fields showed the exclusive nature of cultivated plants in Syria with a high number of endemic forms. Furthermore, Syria is a part of a biodiversity hotspot. Several studies have been performed to study agrobiodiversity in different parts of Syria, but usually on wild species. Many collections have been carried out; however, they focussed preferably on cereals and pulses, and particularly on wheat, like Vavilov’s expedition. Only 30 crops make up the major part of the conserved Syrian crop plant material in the genebank, indicating that most of the remaining 7,000 species of cultivated plants and many other valuable genetic resources species have only been included on a limited scale in the genebank collections. Although a small country (185,180 km2), Syria accommodates numerous ecosystems that allow for a large diversity of plant genetic resources for agriculture ranging from cold-requiring to subtropical crops to live and thrive. Only few references are available in this respect. The aim of the present study was to complete a checklist of Syria’s cultivated plants of agriculture and horticulture excluding plants only grown as ornamental or for forestry. Furthermore, plants taken for reforestation have not been included, if they do not have also agricultural or horticultural uses. Therefore, the inclusion of plants into the checklist follows the same principles as “Mansfeld’s Encyclopedia”. Main sources of information were published literature, floras of Syria, Lebanon and the Mediterranean, as well as Syrian printed sources in Arabic and/or English, reports from FAO on agricultural statistics in Syria, and data from ICARDA and Bioversity International. In addition, personal observations gathered during professional work in the General Commission for Scientific Agricultural Research (GCSAR) in Syria (since 1989) and participation in projects were taken into account. These were: (1) A project on “Conservation and Sustainable Use of Dry Land Agrobiodiversity in the Near East” with participation of Jordan, Lebanon, Syria, and the Palestinian Authority, focussing on landraces and wild relatives of barley, wheat, lentil, alliums, feed legumes, and fruit trees (1999–2005). (2) A project for vegetable landraces (1993–1995) in collaboration with the former International Plant Genetic Resources Institute and the UN Development Programme, in which 380 local vegetable accessions were evaluated. For medicinal plants and fruit trees I was in personal contact with departments of GCSAR and the Ministry of Agriculture and Agrarian Reform, as well as with private organizations. The resulting checklist was compared with the catalogues of crop plants of Italy and a checklist of cultivated plants of Iraq. The cultivated plant species are presented in alphabetical order according to their accepted scientific names. Each entry consists of a nomenclatural part, folk names, details of plant uses, the distribution in Syria (by provinces), a textual description, and references to literature. In total, 262 species belonging to 146 genera and 57 families were identified. Within-species (intraspecific) diversity is a significant measure of the biodiversity. Intraspecific diversity for wild plants has been and remains to be well studied, but for crop plants there are only few results. Mansfeld’s method is an actual logical contribution to such studies. Among the families, the following have the highest number of crop species: Leguminosae (34 spp.), Rosaceae (24), Gramineae (18), Labiatae (18), Compositae (14), Cruciferae (14), Cucurbitaceae (11), Rutaceae (10), Malvaceae (9), Alliaceae (7), and Anacardiaceae (7). The establishment of an effective programme for the maintenance of plant genetic resources in Syria started in the mid-1970s. This programme considered ex situ and in situ collection of the genetic resources of various field crops, fruit trees and vegetables. From a plant genetic resources viewpoint, it is clear that the homegarden is an important location for the cultivation of so-called neglected and underutilized species (neglected from a research side and underutilized from a larger economic side). Such species have so far not received much care from ecologists, botanists and agronomists, and they are considerably under-represented in genebanks.
Resumo:
Botrytis cinerea (Grey mould) is a necrotrophic fungus infecting over 230 plant species worldwide. It can cause major pre- and post-harvest diseases of many agronomic and horticultural crops. Botrytis cinerea causes annual economic losses of 10–100 billion US dollars worldwide and instability in the food supply (Jin and Wu, 2015). Grey mould losses, either at the farm gate or later in the food chain, could be reduced with improved knowledge of inoculum availability during production. In this paper, we report on the ability to monitor Botrytis spore concentration in glasshouse tomato production ahead of symptom development on plants. Using a light weight and portable air sampler (microtitre immunospore trap) it was possible to quantify inoculum availability within hours. Also, this study investigated the spatial aspect of the pathogen with an increase of B. cinerea concentration in bio-aerosols collected in the lower part of the glasshouse (0.5 m) and adjacent to the trained stems of the tomato plants. No obvious relationship was observed between B. cinerea concentration and the internal glasshouse environmental parameters of temperature and relative humidity. However the occurrence of higher outside wind speeds did increase the prevalence of B. cinerea conidia in the cropping environment of a vented glasshouse. Knowledge of inoculum availability at time periods when the environmental risk of pathogen infection is high should improve the targeted use and effectiveness of control inputs.
Resumo:
Malaria remains a serious public health challenge in the tropical world, with 584,000 deaths globally in 2013, of which 90% occurred in Africa, and mostly in pregnant women and children under the age of five. Anopheles gambiae (An. gambiae) is the principal malaria vector in Africa, where vector control measures involve the use of insecticides in the forms of long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS). The development of insecticides resistance mitigates these approaches. Glutathione (GSH) is widely distributed among all living organisms, and is associated with detoxification pathways, especially the Glutathione S-transferases (GSTs). Its direct involvement and relevance in insecticide resistance in An. gambiae has not been determined. Thus, this work examines the contribution of GSH, its biosynthetic genes (GCLM, GCLC) and their possible transcriptional regulator Nrf2 in insecticide resistance in An. gambiae sampled from agricultural setting (areas of intensive agriculture) and residential setting (domestic area). Bioinformatics analysis, W.H.O. adult susceptibility bioassays and molecular techniques were employed to investigate. Total RNA was first isolated from the adults An. gambiae mosquitoes raised from agricultural and residential field-caught larvae which had been either challenged or unchallenged with insecticides. Semi-quantitative RT-PCR using gel image densitometry was used to determine the expression levels of GCLM, GCLC genes and Nrf2. Bioinformatics’ results established the presence of putative AGAP010259 (AhR) and AGAP005300 (Nf2e1) transcription factor binding sites in An. gambiae GCLC and GCLM promoters in silico. An. gambiae s.l. studied here were highly resistant to DDT and permethrin but less resistant to bendiocarb. Both knockdown resistance (kdr) mutation variants L1014S and L1014F that confers resistance to pyrethroid insecticides were identified in both An. coluzzii and An. arabiensis sampled from northern Nigeria. The L1014F was much associated with An. coluzzii. A significant positive correlation (P=0.04) between the frequency of the L1014F point mutation and resistance to DDT and permethrin was observed. However, a weak or non-significant correlation (P=0.772) between the frequency of the L1014S point mutation and resistance was also found. L1014S and L1014F mutations co-occurred in both agricultural and residential settings with high frequencies. However, the frequencies of the two mutations were greater in the agricultural settings than in the residential settings. The levels of total, reduced and oxidized GSH were significantly higher in mosquitoes from agricultural sites than those from residential sites. Increased oxidized GSH levels appears to correlate with higher DDT resistance. The expression levels of GCLM, GCLC and Nrf2 were also significantly up-regulated in adults An. gambiae raised from agricultural and residential field-caught larvae when challenged with insecticide. However, there was higher constitutive expression of GCLM, GCLC and Nrf2 in mosquitoes from agricultural setting. The increased expression levels of these genes and also GSH levels in this population suggest their roles in the response and adaptation of An. gambiae to insecticide challenges. There exists the feasibility of using GSH status in An. gambiae to monitor adaptation and resistance to insecticides.
Resumo:
We outline a philosophical approach to Grand Challenge projects, with particular reference to our experience in our food security project involving the protection of stored grain from insect attack in two countries on different continents. A key consideration throughout has been the management of resistance in these pests to the valuable fumigant phosphine. Emphasis is given to the chain of research issues that required solution and the assembly of a well-integrated team, overlapping in skills for effective communication, in each country to solve the problems identified along that chain. A crucial aspect to maintaining direction is the inclusion of key end users in all deliberations, as well as the establishment and maintenance of effective outlets for the dissemination of practical recommendations. We finish with a summary of our achievements with respect to our approach to this food security Grand Challenge.
Resumo:
In this dissertation I quantify residential behavior response to interventions designed to reduce electricity demand at different periods of the day. In the first chapter, I examine the effect of information provision coupled with bimonthly billing, monthly billing, and in-home displays, as well as a time-of-use (TOU) pricing scheme to measure consumption over each month of the Irish Consumer Behavior Trial. I find that time-of-use pricing with real time usage information reduces electricity usage up to 8.7 percent during peak times at the start of the trial but the effect decays over the first three months and after three months the in-home display group is indistinguishable from the monthly treatment group. Monthly and bi-monthly billing treatments are not found to be statistically different from another. These findings suggest that increasing billing reports to the monthly level may be more cost effective for electricity generators who wish to decrease expenses and consumption, rather than providing in-home displays. In the following chapter, I examine the response of residential households after exposure to time of use tariffs at different hours of the day. I find that these treatments reduce electricity consumption during peak hours by almost four percent, significantly lowering demand. Within the model, I find evidence of overall conservation in electricity used. In addition, weekday peak reductions appear to carry over to the weekend when peak pricing is not present, suggesting changes in consumer habit. The final chapter of my dissertation imposes a system wide time of use plan to analyze the potential reduction in carbon emissions from load shifting based on the Ireland and Northern Single Electricity Market. I find that CO2 emissions savings are highest during the winter months when load demand is highest and dirtier power plants are scheduled to meet peak demand. TOU pricing allows for shifting in usage from peak usage to off peak usage and this shift in load can be met with cleaner and cheaper generated electricity from imports, high efficiency gas units, and hydro units.
Resumo:
Soybean Stem Fly (SSF), Melanagromyza sojae (Zehntner), belongs to the family Agromyzidae and is highly polyphagous, attacking many plant species of the family Fabaceae, including soybean and other beans. SSF is regarded as one of the most important pests in soybean fields of Asia (e.g., China, India), North East Africa (e.g., Egypt), parts of Russia, and South East Asia. Despite reports of Agromyzidae flies infesting soybean fields in Rio Grande do Sul State (Brazil) in 1983 and 2009 and periodic interceptions of SSF since the 1940s by the USA quarantine authorities, SSF has not been officially reported to have successfully established in the North and South Americas. In South America, M. sojae was recently confirmed using morphology and its complete mitochondrial DNA (mtDNA) was characterized. In the present study, we surveyed the genetic diversity of M. sojae, collected directly from soybean host plants, using partial mtDNA cytochrome oxidase I (COI) gene, and provide evidence of multiple (>10) maternal lineages in SSF populations in South America, potentially representing multiple incursion events. However, a single incursion involving multiple-female founders could not be ruled out. We identified a haplotype that was common in the fields of two Brazilian states and the individuals collected from Australia in 2013. The implications of SSF incursions in southern Brazil are discussed in relation to the current soybean agricultural practices, highlighting an urgent need for better understanding of SSF population movements in the New World, which is necessary for developing effective management options for this significant soybean pest. © FUNPEC-RP.
Resumo:
Indospicine (L-2-amino-6-amidinohexanoic acid) is a natural hepatotoxin found in all parts of some Indigofera plants such as I. linnaei and I. spicata. Several studies have documented a susceptibility to this hepatotoxin in different species of animals, including cattle, sheep, dogs and rats, which are associated with mild to severe liver disease after prolonged ingestion. However, there is little published data on the effects of this hepatotoxin in camels, even though Indigofera plants are known to be palatable to camels in central Australia. The secondary poisoning of dogs after prolonged dietary exposure to residual indospicine in camel muscle has raised additional food safety concerns. In this study, a feeding experiment was conducted to investigate the in vivo accumulation, excretion, distribution and histopathological effects of dietary indospicine on camels. Six young camels (2 – 4 year old), weighing 270 − 390 kg were fed daily a roughage diet consisting of Rhodes grass hay and lucerne chaff, supplemented with Indigofera and steam flaked barley. Indigofera (I. spicata) was offered at 597 mg DM/kg body weight (bw)/day designed to deliver 337 µg indospicine/kg bw/day, and fed for a period of 32 days. Blood and muscle biopsies were collected over the period of the study. Concentrations of indospicine in the plasma and muscle biopsy samples were quantitated by validated ultra-performance liquid chromatography−tandem mass spectrometry (UPLC−MS/MS). The highest concentrations in plasma (1.01 mg/L) and muscle (2.63 mg/kg fresh weight (fw)) were found at necropsy (day 33). Other tissues were also collected at necropsy and analysis showed ubiquitous distribution of indospicine, with the highest indospicine accumulation detected in the pancreas (4.86 ± 0.56 mg/kg fw) and liver (3.60 ± 1.34 mg/kg fw); followed by the muscle, heart and kidney. Histopathological examination of liver tissue showed multiple small foci of predominantly mononuclear inflammatory cells. After cessation of Indigofera intake, indospicine present in plasma in the remaining 3 camels had a longer terminal elimination half-life (18.6 days) than muscle (15.9 days), and both demonstrated mono-exponential decreases.
Resumo:
Livestock industries have maintained a keen interest in pasture legumes because of the high protein content and nutritive value. Leguminous Indigofera plant species have been considered as having high feeding values to be utilized as pasture, but the occurrence of the toxic constituent indospicine in some species has restricted this utility. Indospicine has caused both primary and secondary hepatotoxicosis and also reproductive losses, but has only previously been determined in a small number of Indigofera species. This paper validates a high throughput ultra-performance liquid chromatography−tandem mass spectrometry (UPLC−MS/MS) method to determine indospicine content of various Indigofera species found in Australian pasture. Twelve species of Indigofera together with Indigastrum parviflorum plants were collected and analysed. Out of the 84 samples analyzed, *I. spicata contained the highest indospicine level (1003 ± 328 mg/kg DM, n = 4) followed by I. linnaei (755 ± 490 mg/kg DM, n = 51). Indospicine was not detected in 9 of the remaining 11 species, and at only low levels (<10 mg/kg DM) in 2 out of 8 I. colutea specimens and in 1 out of 5 I. linifolia specimens. Indospicine concentrations were below quantitation levels for other Indigofera spp. (I. adesmiifolia, I. georgei, I. hirsuta, I. leucotricha,* I. oblongifolia, I. australis and I. trita) and Indigastrum parviflorum. One of the more significant findings to emerge from this study is that the indospicine content of I. linnaei is highly variable (159 to 2128 mg/kg DM, n = 51), and differs across both regions and seasons. Its first re-growth after spring rain has a higher (p < 0.01) indospicine content than growth following more substantial summer rain. The species collected include the predominant Indigofera in Australia pasture, and of these, only *I. spicata and I. linnaei contain high enough levels of indospicine to pose a potential toxic threat to grazing herbivores.
Resumo:
In Australia, Sportak® (a.i., prochloraz) has been registered since the early 1980's for the postharvest control of both anthracnose and stem-end rots in papaya fruit, despite the persistence of fruit breakdown due to disease during transit and at market destinations. Consequently, the Australian papaya industry has been concerned over the efficacy of prochloraz and whether substitute or alternative solutions were available for better disease control, particularly during times of peak disease pressure. This study therefore investigated the effects of various postharvest treatments for disease control in papaya. Fruit were harvested at colour break from coastal farms in Far North Queensland and treated with commercial rates of various fungicides, including prochloraz, imazalil, thiabendazole and fludioxonil. Additional solutions known to inhibit disease were examined, including chitosan and carnauba wax both with and without ammonium carbonate (AC). Following treatment, fruit were ripened and assessed for quality over their shelf life. Fludioxonil when applied as a hot dip was found to be a more efficacious treatment for control of disease in papaya than prochloraz. The other fungicides were moderately effective, as both thiabendazol and prochloraz exhibited an intermediate response and imazalil was the least effective. Disease severity was lowest in fruit treated with AC followed by chitosan, whilst chitosan delayed degreening. Overall, the study found that hot fludioxonil provided an effective replacement of the currently registered chemical prochloraz, and that alternate solutions such chitosan and AC may also be beneficial, particularly for low chemical input farming systems.
Resumo:
The effect of different fungicide programs on grey mould (caused by Botrytis cinerea) and stem-end rot (caused by Gnomoniopsis fructicola) affecting strawberry plants (Fragaria ×ananassa cv. Festival) was studied in subtropical Australia over three years. The treatments involved a range of different synthetic multi- and single-site fungicides with different modes of action, a plant-defence promoter, plant extracts (lupin and rhubarb), organic acids, fatty acids, a salt, two strains of Bacillus subtilis, and single strains of B. amyloliquefaciens, Streptomyces lydicus and Trichoderma harzianum. Standard programs based on captan and thiram alternated, and applied with iprodione, fenhexamid, cyprodinil + fludioxonil, and penthiopyrad resulted in 3–4 % of unmarketable fruit compared with 25–38 % in the water-treated controls. There was no difference in the level of disease suppression when five or thirteen applications of single-site fungicides were rotated with the two multi-site fungicides. The incidence of unmarketable fruit was similar to the standard programs using isopyrazam (in 1 year out of 2), or penthiopyrad, fluazinam, chlorothalonil or thiram alone (in 1 year out of 1). The other fungicide programs were generally less effective. There were strong relationships between marketable yield and the incidence of unmarketable fruit over the three years (R2s = 0.82–0.93). A strategy based on thiram and captan applied alternately, with reduced applications of single-site fungicides is recommended and should reduce the chance of resistance to single-site fungicides becoming widespread in populations of the grey mould fungus. Although the program based on thiram alone had a similar incidence of unmarketable fruit as the standard program, repeated weekly applications of thiram are not recommended as they may cause unacceptable residues in the fruit. There were issues with some of the other fungicides due to phytotoxicity, residues, or difficulties with registering new fungicides that are in the same chemical group as currently registered products.
Resumo:
International audience
Resumo:
Nonpoint sources (NPS) pollution from agriculture is the leading source of water quality impairment in U.S. rivers and streams, and a major contributor to lakes, wetlands, estuaries and coastal waters (U.S. EPA 2016). Using data from a survey of farmers in Maryland, this dissertation examines the effects of a cost sharing policy designed to encourage adoption of conservation practices that reduce NPS pollution in the Chesapeake Bay watershed. This watershed is the site of the largest Total Maximum Daily Load (TMDL) implemented to date, making it an important setting in the U.S. for water quality policy. I study two main questions related to the reduction of NPS pollution from agriculture. First, I examine the issue of additionality of cost sharing payments by estimating the direct effect of cover crop cost sharing on the acres of cover crops, and the indirect effect of cover crop cost sharing on the acres of two other practices: conservation tillage and contour/strip cropping. A two-stage simultaneous equation approach is used to correct for voluntary self-selection into cost sharing programs and account for substitution effects among conservation practices. Quasi-random Halton sequences are employed to solve the system of equations for conservation practice acreage and to minimize the computational burden involved. By considering patterns of agronomic complementarity or substitution among conservation practices (Blum et al., 1997; USDA SARE, 2012), this analysis estimates water quality impacts of the crowding-in or crowding-out of private investment in conservation due to public incentive payments. Second, I connect the econometric behavioral results with model parameters from the EPA’s Chesapeake Bay Program to conduct a policy simulation on water quality effects. I expand the econometric model to also consider the potential loss of vegetative cover due to cropland incentive payments, or slippage (Lichtenberg and Smith-Ramirez, 2011). Econometric results are linked with the Chesapeake Bay Program watershed model to estimate the change in abatement levels and costs for nitrogen, phosphorus and sediment under various behavioral scenarios. Finally, I use inverse sampling weights to derive statewide abatement quantities and costs for each of these pollutants, comparing these with TMDL targets for agriculture in Maryland.
Resumo:
Developing nations in Africa are not shielded from the pressures of a globalized competitive agricultural marketplace. With an appreciable bulk of her people deriving livelihoods from diverse agricultural enterprises, these nations must respond to important contemporary issues shaping global agriculture. Farmers from such nations, including Ghana, will be able to improve their participation in the competitive local, regional and global agricultural marketplace if the appropriate agricultural technologies and extension information support are available. To achieve this, a new breed of agricultural extension graduates who can respond to current and emerging challenges in agriculture and interface effectively with farmers must be produced through responsive extension education and training. While extension education can produce effective extensionists to hasten agricultural development, budgetary constraints make it difficult for most African governments to successfully and sustainably implement such educational programs. However, public-private partnership (PPP) initiatives offer a way out of this financial dilemma. Beginning in 1993, the Sasakawa Africa Fund for Extension Education (SAFE) worked with the University of Cape Coast (UCC) in Ghana to develop an innovative extension education program through a public private partnership. The program, comprising a BSc. and Diploma components, was designed to respond to the myriad of challenges facing higher agricultural extension education in Ghana. A key practical feature of the curricula is the “Supervised Enterprise Projects” (SEPS), which enable students to work with relevant stakeholders to identify and tackle agricultural problems in farming communities through experiential extension approaches and action research. The SAFE-UCC initiative fulfils important education goals such as: expanding and improving access; ensuring quality and relevance; ensuring funding and mobilizing resources for sustainability; building partnerships and linkages; and promoting international co-operation. The paper discusses the underlying conditions for a successful public private partnership in agricultural and extension education and sheds light on the impacts, lessons learned and challenges.
Resumo:
This dissertation is composed of three essays covering two areas of interest. The first topic is personal transportation demand with a focus on price and fuel efficiency elasticities of mileage demand, challenging assumptions common in the rebound effect literature. The second topic is consumer finance with a focus on small loans. The first chapter creates separate variables for fuel prices during periods of increasing and decreasing prices as well as an observed fuel economy measure to empirically test the equivalence of these elasticities. Using a panel from Germany from 1997 to 2009 I find a fuel economy elasticity of mileage of 53.3%, which is significantly different from the gas price elasticity of mileage during periods of decreasing gas prices, 4.8%. I reject the null hypothesis or price symmetry, with the elasticity of mileage during period of increasing gas prices ranging from 26.2% and 28.9%. The second chapter explores the potential for the rebound effect to vary with income. Panel data from U.S. households from 1997 to 2003 is used to estimate the rebound effect in a median regression. The estimated rebound effect independent of income ranges from 17.8% to 23.6%. An interaction of income and fuel economy is negative and significant, indicating that the rebound effect may be much higher for low income individuals and decreases with income; the rebound effect for low income households ranged from 80.3% to 105.0%, indicating that such households may increase gasoline consumption given an improvement in fuel economy. The final chapter documents the costs of credit instruments found in major mail order catalogs throughout the 20th century. This study constructs a new dataset and finds that the cost of credit increased and became stickier as mail order retailers switched from an installment-style closed-end loan to a revolving-style credit card. This study argues that revolving credit's ability to decrease salience of credit costs in the price of goods is the best explanation for rate stickiness in the mail order industry as well as for the preference of revolving credit among retailers.