998 resultados para adaptive variability
Resumo:
The origin of the eddy variability around the 25°S band in the Indian Ocean is investigated. We have found that the surface circulation east of Madagascar shows an anticyclonic subgyre bounded to the south by eastward flow from southwest Madagascar, and to the north by the westward flowing South Equatorial Current (SEC) between 15° and 20°S. The shallow, eastward flowing South Indian Ocean Countercurrent (SICC) extends above the deep reaching, westward flowing SEC to 95°E around the latitude of the high variability band. Applying a two-layer model reveals that regions of large vertical shear along the SICC-SEC system are baroclinically unstable. Estimates of the frequencies (3.5–6 times/year) and wavelengths (290–470 km) of the unstable modes are close to observations of the mesoscale variability derived from altimetry data. It is likely then that Rossby wave variability locally generated in the subtropical South Indian Ocean by baroclinic instability is the origin of the eddy variability around 25°S as seen, for example, in satellite altimetry.
Resumo:
A connection is shown to exist between the mesoscale eddy activity around Madagascar and the large-scale interannual variability in the Indian Ocean. We use the combined TOPEX/Poseidon-ERS sea surface height (SSH) data for the period 1993–2003. The SSH-fields in the Mozambique Channel and east of Madagascar exhibit a significant interannual oscillation. This is related to the arrival of large-scale anomalies that propagate westward along 10°–15°S in response to the Indian Ocean dipole (IOD) events. Positive (negative) SSH anomalies associated to a positive (negative) IOD phase induce a shift in the intensity and position of the tropical and subtropical gyres. A weakening (strengthening) results in the intensity of the South Equatorial Current and its branches along east Madagascar. In addition, the flow through the narrows of the Mozambique Channel around 17°S increases (decreases) during periods of a stronger and northward (southward) extension of the subtropical (tropical) gyre. Interaction between the currents in the narrows and southward propagating eddies from the northern Channel leads to interannual variability in the eddy kinetic energy of the central Channel in phase with the one in the SSH-field.
Resumo:
We demonstrate that a new geomagnetic index of solar variability exhibits stronger correlations with atmospheric circulation variations than conventional measures. The circulation anomalies are particularly enhanced over the North Atlantic / Eurasian sector, where there are large changes in the occurrence of blocking and the winter mean surface temperature differs by several degrees between high- and low-solar terciles. The relationship is also simpler, being largely linear between high- and low-solar winters. While the circulation anomalies strongly resemble the North Atlantic Oscillation they also extend deeper into Eurasia, in a distinct signature which may be useful for the detection and attribution of observed changes and also the identification of dynamical mechanisms.
Resumo:
A powerful way to test the realism of ocean general circulation models is to systematically compare observations of passive tracer concentration with model predictions. The general circulation models used in this way cannot resolve a full range of vigorous mesoscale activity (on length scales between 10–100 km). In the real ocean, however, this activity causes important variability in tracer fields. Thus, in order to rationally compare tracer observations with model predictions these unresolved fluctuations (the model variability error) must be estimated. We have analyzed this variability using an eddy‐resolving reduced‐gravity model in a simple midlatitude double‐gyre configuration. We find that the wave number spectrum of tracer variance is only weakly sensitive to the distribution of (large scale slowly varying) tracer sources and sinks. This suggests that a universal passive tracer spectrum may exist in the ocean. We estimate the spectral shape using high‐resolution measurements of potential temperature on an isopycnal in the upper northeast Atlantic Ocean, finding a slope near k −1.7 between 10 and 500 km. The typical magnitude of the variance is estimated by comparing tracer simulations using different resolutions. For CFC‐ and tritium‐type transient tracers the peak magnitude of the model variability saturation error may reach 0.20 for scales shorter than 100 km. This is of the same order as the time mean saturation itself and well over an order of magnitude greater than the instrumental uncertainty.
Resumo:
An annually laminated, uranium-series dated, Holocene stalagmite from southeast Ethiopia has been analysed for growth rate and δ13C and δ18O variations at annual to biennial resolution, in order to provide the first long duration proxy record of decadal-scale rainfall variability in this climatically sensitive region. Our study site (10°N) is climatically influenced by both summer (June—August) and spring (March—May) rainfall caused by the annual movement of the Inter-Tropical Convergence Zone (ITCZ) and modulated by large-scale anomalies in the atmospheric circulation and in ocean temperatures. Here we show that stalagmite growth, episodic throughout the last 7800 years, demonstrates decadal-scale (8—25 yr) variability in both growth rate and δ 18O. A hydrological model was employed and indicates that this decadal variability is due to variations in the relative amounts of rainfall in the two rain seasons. Our record, unique in its combination of length (a total of ~1000 years), annual chronology and high resolution δ18O, shows for the first time that such decadal-scale variability in rainfall in this region has occurred through the Holocene, which implies persistent decadal-scale variability for the large-scale atmospheric and oceanic driving factors.
Resumo:
Much of the atmospheric variability in the North Atlantic sector is associated with variations in the eddy-driven component of the zonal flow. Here we present a simple method to specifically diagnose this component of the flow using the low-level wind field (925–700 hpa ). We focus on the North Atlantic winter season in the ERA-40 reanalysis. Diagnostics of the latitude and speed of the eddy-driven jet stream are compared with conventional diagnostics of the North Atlantic Oscillation (NAO) and the East Atlantic (EA) pattern. This shows that the NAO and the EA both describe combined changes in the latitude and speed of the jet stream. It is therefore necessary, but not always sufficient, to consider both the NAO and the EA in identifying changes in the jet stream. The jet stream analysis suggests that there are three preferred latitudinal positions of the North Atlantic eddy-driven jet stream in winter. This result is in very good agreement with the application of a statistical mixture model to the two-dimensional state space defined by the NAO and the EA. These results are consistent with several other studies which identify four European/Atlantic regimes, comprising three jet stream patterns plus European blocking events.
Resumo:
Africa is thought to be the region most vulnerable to the impacts of climate variability and change. Agriculture plays a dominant role in supporting rural livelihoods and economic growth over most of Africa. Three aspects of the vulnerability of food crop systems to climate change in Africa are discussed: the assessment of the sensitivity of crops to variability in climate, the adaptive capacity of farmers, and the role of institutions in adapting to climate change. The magnitude of projected impacts of climate change on food crops in Africa varies widely among different studies. These differences arise from the variety of climate and crop models used, and the different techniques used to match the scale of climate model output to that needed by crop models. Most studies show a negative impact of climate change on crop productivity in Africa. Farmers have proved highly adaptable in the past to short- and long-term variations in climate and in their environment. Key to the ability of farmers to adapt to climate variability and change will be access to relevant knowledge and information. It is important that governments put in place institutional and macro-economic conditions that support and facilitate adaptation and resilience to climate change at local, national and transnational level.
Resumo:
Periods between predator detection and an escape response (escape delays) by prey upon attack by a predator often arise because animals trade-off the benefits such a delay gives for assessing risk accurately with the costs of not escaping as quickly as possible. We tested whether freezing behaviour (complete immobility in a previously foraging bird) observed in chaffinches before escaping from an approaching potential threat functions as a period of risk-assessment, and whether information on predator identity is gained even when time available is very short. We flew either a model of a sparrowhawk (predator) or a woodpigeon (no threat) at single chaffinches. Escape delays were significantly shorter with the hawk, except when a model first appeared close to the chaffinch. Chaffinches were significantly more vigilant when they resumed feeding after exposure to the sparrowhawk compared to the woodpigeon showing that they were able to distinguish between threats, and this applied even when time available for assessment was short (an average of 0.29 s). Our results show freezing in chaffinches functions as an effective economic risk assessment period, and that threat information is gained even when very short periods of time are available during an attack.
Resumo:
We describe the nature of recent (50 year) rainfall variability in the summer rainfall zone, South Africa, and how variability is recognised and responded to on the ground by farmers. Using daily rainfall data and self-organising mapping (SOM) we identify 12 internally homogeneous rainfall regions displaying differing parameters of precipitation change. Three regions, characterised by changing onset and timing of rains, rainfall frequencies and intensities, in Limpopo, North West and KwaZulu Natal provinces, were selected to investigate farmer perceptions of, and responses to, rainfall parameter changes. Village and household level analyses demonstrate that the trends and variabilities in precipitation parameters differentiated by the SOM analysis were clearly recognised by people living in the areas in which they occurred. A range of specific coping and adaptation strategies are employed by farmers to respond to climate shifts, some generic across regions and some facilitated by specific local factors. The study has begun to understand the complexity of coping and adaptation, and the factors that influence the decisions that are taken.
Resumo:
In clinical trials, situations often arise where more than one response from each patient is of interest; and it is required that any decision to stop the study be based upon some or all of these measures simultaneously. Theory for the design of sequential experiments with simultaneous bivariate responses is described by Jennison and Turnbull (Jennison, C., Turnbull, B. W. (1993). Group sequential tests for bivariate response: interim analyses of clinical trials with both efficacy and safety endpoints. Biometrics 49:741-752) and Cook and Farewell (Cook, R. J., Farewell, V. T. (1994). Guidelines for monitoring efficacy and toxicity responses in clinical trials. Biometrics 50:1146-1152) in the context of one efficacy and one safety response. These expositions are in terms of normally distributed data with known covariance. The methods proposed require specification of the correlation, ρ between test statistics monitored as part of the sequential test. It can be difficult to quantify ρ and previous authors have suggested simply taking the lowest plausible value, as this will guarantee power. This paper begins with an illustration of the effect that inappropriate specification of ρ can have on the preservation of trial error rates. It is shown that both the type I error and the power can be adversely affected. As a possible solution to this problem, formulas are provided for the calculation of correlation from data collected as part of the trial. An adaptive approach is proposed and evaluated that makes use of these formulas and an example is provided to illustrate the method. Attention is restricted to the bivariate case for ease of computation, although the formulas derived are applicable in the general multivariate case.
Resumo:
There is increasing interest in combining Phases II and III of clinical development into a single trial in which one of a small number of competing experimental treatments is ultimately selected and where a valid comparison is made between this treatment and the control treatment. Such a trial usually proceeds in stages, with the least promising experimental treatments dropped as soon as possible. In this paper we present a highly flexible design that uses adaptive group sequential methodology to monitor an order statistic. By using this approach, it is possible to design a trial which can have any number of stages, begins with any number of experimental treatments, and permits any number of these to continue at any stage. The test statistic used is based upon efficient scores, so the method can be easily applied to binary, ordinal, failure time, or normally distributed outcomes. The method is illustrated with an example, and simulations are conducted to investigate its type I error rate and power under a range of scenarios.
Resumo:
Sequential methods provide a formal framework by which clinical trial data can be monitored as they accumulate. The results from interim analyses can be used either to modify the design of the remainder of the trial or to stop the trial as soon as sufficient evidence of either the presence or absence of a treatment effect is available. The circumstances under which the trial will be stopped with a claim of superiority for the experimental treatment, must, however, be determined in advance so as to control the overall type I error rate. One approach to calculating the stopping rule is the group-sequential method. A relatively recent alternative to group-sequential approaches is the adaptive design method. This latter approach provides considerable flexibility in changes to the design of a clinical trial at an interim point. However, a criticism is that the method by which evidence from different parts of the trial is combined means that a final comparison of treatments is not based on a sufficient statistic for the treatment difference, suggesting that the method may lack power. The aim of this paper is to compare two adaptive design approaches with the group-sequential approach. We first compare the form of the stopping boundaries obtained using the different methods. We then focus on a comparison of the power of the different trials when they are designed so as to be as similar as possible. We conclude that all methods acceptably control type I error rate and power when the sample size is modified based on a variance estimate, provided no interim analysis is so small that the asymptotic properties of the test statistic no longer hold. In the latter case, the group-sequential approach is to be preferred. Provided that asymptotic assumptions hold, the adaptive design approaches control the type I error rate even if the sample size is adjusted on the basis of an estimate of the treatment effect, showing that the adaptive designs allow more modifications than the group-sequential method.