948 resultados para accelerated aging
Resumo:
We introduce a class of distance-dependent interactions in an accelerated exclusion process inspired by the observation of transcribing RNA polymerase speeding up when “pushed” by a trailing one. On a ring, the accelerated exclusion process steady state displays a discontinuous transition, from being homogeneous (with augmented currents) to phase segregated. In the latter state, the holes appear loosely bound and move together, much like a train. Surprisingly, the current-density relation is simply J=1-ρ, signifying that the “hole train” travels with unit velocity.
Resumo:
We investigate the aging dynamics of amorphous SiO2 via molecular dynamics simulations of a quench from a high temperature Ti to a lower temperature Tf.We obtain a microscopic picture of aging dynamics by analyzing single particle trajectories, identifying jump events when a particle escapes the cage formed by its neighbors, and determining how these jumps depend on the waiting time tw, the time elapsed since the temperature quench to Tf. We find that the only tw-dependent microscopic quantity is the number of jumping particles per unit time, which decreases with age. Similar to previous studies for fragile glass formers, we show here for the strong glass former SiO2 that neither the distribution of jump lengths nor the distribution of times spent in the cage are tw dependent.We conclude that the microscopic aging dynamics is surprisingly similar for fragile and strong glass formers.
Resumo:
We introduce a class of distance-dependent interactions in an accelerated exclusion process inspired by the observation of transcribing RNA polymerase speeding up when “pushed” by a trailing one. On a ring, the accelerated exclusion process steady state displays a discontinuous transition, from being homogeneous (with augmented currents) to phase segregated. In the latter state, the holes appear loosely bound and move together, much like a train. Surprisingly, the current-density relation is simply J=1-ρ, signifying that the “hole train” travels with unit velocity.
Resumo:
In an accelerated exclusion process (AEP), each particle can "hop" to its adjacent site if empty as well as "kick" the frontmost particle when joining a cluster of size ℓ⩽ℓ_{max}. With various choices of the interaction range, ℓ_{max}, we find that the steady state of AEP can be found in a homogeneous phase with augmented currents (AC) or a segregated phase with holes moving at unit velocity (UV). Here we present a detailed study on the emergence of the novel phases, from two perspectives: the AEP and a mass transport process (MTP). In the latter picture, the system in the UV phase is composed of a condensate in coexistence with a fluid, while the transition from AC to UV can be regarded as condensation. Using Monte Carlo simulations, exact results for special cases, and analytic methods in a mean field approach (within the MTP), we focus on steady state currents and cluster sizes. Excellent agreement between data and theory is found, providing an insightful picture for understanding this model system.
Resumo:
To develop two new models of expedited partner therapy for the UK, and evaluate them for feasibility, acceptability and preliminary outcome estimates to inform the design of a randomised controlled trial (RCT).
Resumo:
Patterns of morbidity and mortality among human immunodeficiency virus (HIV)-infected individuals taking antiretroviral therapy are changing as a result of immune reconstitution and improved survival. We studied the influence of aging on the epidemiology of non-AIDS diseases in the Swiss HIV Cohort Study.
Resumo:
Previous studies have shown both declining and stable semantic-memory abilities during healthy aging. There is consistent evidence that semantic processes involving controlled mechanisms weaken with age. In contrast, results of aging studies on automatic semantic retrieval are often inconsistent, probably due to methodological limitations and differences. The present study therefore examines age-related alterations in automatic semantic retrieval and memory structure with a novel combination of critical methodological factors, i.e., the selection of subjects, a well-designed paradigm, and electrophysiological methods that result in unambiguous signal markers. Healthy young and elderly participants performed lexical decisions on visually presented word/non-word pairs with a stimulus onset asynchrony (SOA) of 150 ms. Behavioral and electrophysiological data were measured, and the N400-LPC complex, an event-related potential component sensitive to lexical-semantic retrieval, was analyzed by power and topographic distribution of electrical brain activity. Both age groups exhibited semantic priming (SP) and concreteness effects in behavioral reaction time and the electrophysiological N400-LPC complex. Importantly, elderly subjects did not differ significantly from the young in their lexical decision and SP performances as well as in the N400-LPC SP effect. The only difference was an age-related delay measured in the N400-LPC microstate. This could be attributed to existing age effects in controlled functions, as further supported by the replicated age difference in word fluency. The present results add new behavioral and neurophysiological evidence to earlier findings, by showing that automatic semantic retrieval remains stable in global signal strength and topographic distribution during healthy aging.
Resumo:
It is crucial for aging societies to evaluate trends in cancer mortality rates of older adults. This study examined socio-demographic and regional characteristics specifically focused on the cancer mortality experience of older adults in Switzerland.
Resumo:
Cancer is disease of aging that disproportionately affects older adults and often results in considerable public health consequences. This study evaluated gender-age-specific cancer mortality risk factors in older adults in Switzerland with attention to the most common types of cancer.
Resumo:
IgE antibodies bind the high-affinity IgE Fc receptor (FcεRI), found primarily on mast cells and basophils, and trigger inflammatory cascades of the allergic response. Inhibitors of IgE-FcεRI binding have been identified and an anti-IgE therapeutic antibody (omalizumab) is used to treat severe allergic asthma. However, preformed IgE-FcεRI complexes that prime cells before allergen exposure dissociate extremely slowly and cannot be disrupted by strictly competitive inhibitors. IgE-Fc conformational flexibility indicated that inhibition could be mediated by allosteric or other non-classical mechanisms. Here we demonstrate that an engineered protein inhibitor, DARPin E2_79 (refs 9, 10, 11), acts through a non-classical inhibition mechanism, not only blocking IgE-FcεRI interactions, but actively stimulating the dissociation of preformed ligand-receptor complexes. The structure of the E2_79-IgE-Fc(3-4) complex predicts the presence of two non-equivalent E2_79 sites in the asymmetric IgE-FcεRI complex, with site 1 distant from the receptor and site 2 exhibiting partial steric overlap. Although the structure is indicative of an allosteric inhibition mechanism, mutational studies and quantitative kinetic modelling indicate that E2_79 acts through a facilitated dissociation mechanism at site 2 alone. These results demonstrate that high-affinity IgE-FcεRI complexes can be actively dissociated to block the allergic response and suggest that protein-protein complexes may be more generally amenable to active disruption by macromolecular inhibitors.