1000 resultados para ZnO crystal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics. Most crystal growth processes involve fluid flows, such as flows in the melt, solution or vapor. Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices. The application of devices requires large diameter crystals with a high degree of crystallographic perfection, low defect density and uniform dopant distribution. In this article, the flow models developed in modeling of the crystal growth processes such as Czochralski, ammonothermal and physical vapor transport methods are reviewed. In the Czochralski growth modeling, the flow models for thermocapillary flow, turbulent flow and MHD flow have been developed. In the ammonothermal growth modeling, the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems. In the physical vapor transport growth modeling, the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth. In addition, perspectives for future studies on crystal growth modeling are proposed. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal crystals formed by two types of polystyrene particles of different sizes (94 and 141 nm) at various number ratios (94:141 nm) are studied. Experiments showed that the formation time of crystals lengthens as the number ratio of the two components approaches 1:1. The dependence of the mean interparticle distance (D-0), crystal structure and alloy structure on the number ratio of the two types of particles was Studied by means of Kossel diffraction technique and reflection spectra. The results showed that as the number ratio decreased, the mean interparticle distance (D-0) became larger. And the colloidal crystal in binary mixtures is more preferably to form the bcc structure. This study found that binary systems form the substitutional solid solution (sss)-type alloy structure in all cases except when the number ratio of two types of particles is 5:1, which results instead in the superlattice structure. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel stress-strain relation with two stages of linear elastic deformation is observed in [0 0 0 1]-oriented ZnO nanorods under uniaxial tensile loading. This phenomenon results from a phase transformation from wurtzite (WZ, P6(3)mc space group) to a body-centered tetragonal structure with four-atom rings (denoted as BCT-4) belonging to the P4(2)/mnm space group. The analysis here focuses on the effects of nanorod size and temperature on the phase transformation and the associated mechanical behavior. It is found that as size is increased from 19.5 to 45.5 angstrom, the critical stress for nucleation of the transformation decreases by 25% from 21.90 to 16.50 GPa and the elastic moduli of the WZ- and BCT-4-structured nanorods decrease by 24% (from 299.49 to 227.51 GPa) and 38% (from 269.29 to 166.86 GPa), respectively. A significant temperature effect is also observed, with the critical stress for transformation initiation decreasing 87.8% from 17.89 to 2.19 GPa as temperature increases from 300 to 1500 K. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports that an optical diagnostic system consisting of Mach-Zehnder interferometer with a phase shift device and image processor has been used for study of the kinetics of protein crystal growing process. The crystallization process of protein crystal by vapour diffusion is investigated. The interference fringes are observed in real time. The present experiment demonstrates that the diffusion and the sedimentation influence the crystallization of protein crystal which grows in solution, and the concentration capillary convection associated with surface tension occurs at the vicinity of free surface of the protein mother liquor, and directly affects on the outcome of protein crystallization. So far the detailed analysis and the important role of the fluid phenomena in protein crystallization have been discussed a little in both space- and ground-based crystal growth experiments. It is also found that these fluid phenomena affect the outcome of protein crystallization, regular growth, and crystal quality. This may explain the fact that many results of space-based investigation do not show overall improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The macrostructure can be changed by changing the morphology of its units. In this article, we use a colloidal template route, combined with hydrothermal growth method, to get the hexagonally arrayed ZnO nanorods on the polycrystalline ZnO substrate. More significantly, through controlling the morphology of ZnO crystals by adding structure-directing agent in the precursor solution, the highly ordered porous ZnO films were obtained instead of ZnO nanorods. This templated solvent-thermal method has great potential in micro/nano-fabrication. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the process of lysozyme protein crystallization with batch method, the macroscopic flow field of solid/liquid system was observed by particle image velocimetry (PIV). Furthermore, a normal growth rate of (110) face and local flow field around a single protein crystal were obtained by a long work distance microscope. The experimental results showed that the average velocity, the maximal velocity of macroscopic solid/liquid system and the velocity of local flow field around single protein crystal were fluctuant. The effective boundary layer thickness delta(eff), the concentration at the interface Q and the characteristic velocity V were calculated using a convection-diffusion model. The results showed that the growth of lysozyme crystal in this experiment was dominated by interfacial kinetics rather than bulk transport, and the function of buoyancy-driven flow in bulk transport was small, however, the effect of bulk transport in crystal growth had a tendency to increase with the increase of lysozyme concentration. The calculated results, also showed that the order of magnitude of shear force was about 10(-21) N, which was much less than the bond force between the lysozyme molecules. Therefore the shear force induced by buoyancy-driven flows cannot remove the protein molecules from the interface of crystal.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: