999 resultados para X-STR
Resumo:
A variety of hydrogenated and non-hydrogenated amorphous carbon thin films have been characterized by means of grazing-incidence X-ray reflectivity (XRR) to give information about their density, thickness, surface roughness and layering. We used XRR to validate the density of ta-C, ta-C:H and a-C:H films derived from the valence plasmon in electron energy loss spectroscopy measurements, up to 3.26 and 2.39 g/cm3 for ta-C and ta-C:H, respectively. By comparing XRR and electron energy loss spectroscopy (EELS) data, we have been able for the first time to fit a common electron effective mass of m*/me = 0.87 for all amorphous carbons and diamond, validating the `quasi-free' electron approach to density from valence plasmon energy. While hydrogenated films are found to be substantially uniform in density across the film, ta-C films grown by the filtered cathodic vacuum arc (FCVA) show a multilayer structure. However, ta-C films grown with an S-bend filter show a high uniformity and only a slight dependence on the substrate bias of both sp3 and layering.
Resumo:
Using a magneto-optical (MO) technique, magnetic field distributions have been measured in a melt-textured YBa 2Cu 3O 7-x bulk superconductor, joined to form an artificial grain boundary (GB), in an external magnetic field perpendicular to the sample surface. The magnetic field at a weak section of the GB shows different values between the field increasing up to 150mT and decreasing down to 0T after zero-field-cooling. Namely, the magnetic field in increasing field is higher than that in decreasing field, even in the same external field. This result supports a model in which such differences in magnetic field at the weak-link GB give rise to the hysteresis behavior in the field dependence of transport critical current density in polycrystalline samples. The field distributions across a well-joined region of the GB behave similarly to the adjoining bulk material and this result indicates the possibility of creating useful artifacts provided that the strongly coupled sections can be reproduced on a larger scale.
Resumo:
The maintenance of the growth of the multibillion-dollar semiconductor industry requires the development of techniques for the fabrication and characterisation of nanoscale devices. Consequently, there is great interest in photolithography techniques such as extreme UV and x-ray. Both of these techniques are extremely expensive and technologically very demanding. In this paper we describe research on the feasibility of exploiting x-ray propagation within carbon nanotubes (CNT's) for the fabrication and characterisation of nanoscale devices. This work discusses the parameters determining the design space available. To demonstrate experimentally the feasibility of x-ray propagation, arrays of carbon nanotubes have been grown on silicon membranes. The latter are required to provide structural support for the CNT's while minimising energy loss. To form a waveguide metal is deposited between the nanotubes to block x-ray transmission in this region at the same time as cladding the CNT's. The major challenge has been to fill the spaces between the CNT's with material of sufficient thickness to block x-ray transmission while maintaining the structural integrity of the CNT's. Various techniques have been employed to fill the gaps between the nanotubes including electroplating, sputtering and evaporation. This work highlights challenges encountered in optimising the process.
Resumo:
MicroRNAs (miRNAs) are a growing class of small RNAs ( about 22 nt) that play crucial regulatory roles in the genome by targeting mRNAs for cleavage or translational repression. Most of the identified miRNAs are highly conserved among species, indicating
Resumo:
Background: MicroRNAs (miRNAs), which are small, non-coding RNAs approximately 21-nucleotides in length, have become a major focus of research in molecular biology. Mammalian miRNAs are proposed to regulate approximately 30% of all protein-coding genes. P
Resumo:
A specific blood coagulation factor X activator was purified from the venom of Ophiophagus hannah by gel filtration and two steps of FPLC Mono-Q column ion-exchange chromatography. It showed a single protein band both in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and alkaline polyacrylamide gel electrophoresis. The mol. wt was estimated to be 62,000 in non-reducing conditions and 64,500 in reducing conditions by SDS-PAGE. The isoelectric point was found to be pH 5.6. The enzyme had weak amidolytic activities toward CBS 65-25, but it showed no activities on S-2266, S-2302, thrombin substrate S-2238, plasmin substrate S-2251 or factor Xa substrate S-2222. It had no arginine esterase activity toward substrate benzoylarginine ethylester (BAEE). The enzyme activated factor X in vitro and the effect was absolutely Ca2+ dependent, with a Hill coefficient of 6.83. It could not activate prothrombin nor had any effect on fibrinogen and thus appeared to act specifically on factor X. The procoagulant activity of the enzyme was almost completely inhibited by serine protease inhibitors like PMSF, TPCK and soybean trypsin inhibitor; partially inhibited by L-cysteine. Metal chelator EDTA did not inhibit its procoagulant activity. These results suggest that the factor X activator from O. hannah venom is a serine protease.
Resumo:
A specific activator of blood coagulation factor X was purified from the venom of Bungarus fasciatus by gel filtration and by ion-exchange chromatography on a Mono-Q column (FPLC). It consisted of a single polypeptide chain, with a mel. wt of 70,000 in reducing and non-reducing conditions. The enzyme had an amidolytic activity towards the chromogenic substrates S-2266 and S-2302 but it did not hydrolyse S-2238, S2251 or S-2222, which are specific substrates for thrombin, plasmin and factor Xa, respectively. The enzyme activated factor X in vitro and the effect was Ca2+ dependent with a Hill coefficient of 7.9. As with physiological activators, the venom activator cleaves the heavy chain of factor X, producing the activated factor Xa alpha. The purified factor X activator from B. fasciatus venom did not activate prothrombin, nor did it cleave or clot purified fibrinogen. The amidolytic activity and the factor X activation activity of the factor X activator from B. fasciatus venom were readily inhibited by serine protease inhibitors such as diisopropyl fluorophosphate (DFP), phenylmethanesulfonyl fluoride (PMSF), benzamidine and by soybean trypsin inhibitor but not by EDTA. These observations suggest that the factor X activator from B. fasciatus venom is a serine protease. It therefore differs from those of activators obtained from Vipera russelli and Bothrops atrox venoms, which are metalloproteinases.
Resumo:
This paper proposes a method for extracting reliable architectural characteristics from complex porous structures using micro-computed tomography (μCT) images. The work focuses on a highly porous material composed of a network of fibres bonded together. The segmentation process, allowing separation of the fibres from the remainder of the image, is the most critical step in constructing an accurate representation of the network architecture. Segmentation methods, based on local and global thresholding, were investigated and evaluated by a quantitative comparison of the architectural parameters they yielded, such as the fibre orientation and segment length (sections between joints) distributions and the number of inter-fibre crossings. To improve segmentation accuracy, a deconvolution algorithm was proposed to restore the original images. The efficacy of the proposed method was verified by comparing μCT network architectural characteristics with those obtained using high resolution CT scans (nanoCT). The results indicate that this approach resolves the architecture of these complex networks and produces results approaching the quality of nanoCT scans. The extracted architectural parameters were used in conjunction with an affine analytical model to predict the axial and transverse stiffnesses of the fibre network. Transverse stiffness predictions were compared with experimentally measured values obtained by vibration testing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A total of 38 Amiota (s. str.) species (about 40% of the world total) are reported from southern China, with descriptions of 23 new species, i.e. sinuata species-group: aculeata Chen and Aotsuka, sp. nov., subsinuata Chen and Aotsuka, sp. nov., xishuangbanna Chen and Aotsuka, sp. nov.; basdeni species-group: brevipartita Chen and Gao, sp. nov., curvispina Chen and Gao, sp. nov., lipingae Chen and Gao, sp. nov., huae Chen and Gao, sp. nov., longispina Chen and Gao, sp. nov.; taurusata species-group: asymmetrica Chen and Takamori, sp. nov.; femorata Chen and Takamori, sp. nov., yixiangensis Chen and Takamori, sp. nov.; alboguttata species-group: ailaoshanensis Chen and Watabe, sp. nov., arcuata Chen and Watabe, sp. nov., dehiscentia Chen and Watabe, sp. nov., jizushanensis Chen and Watabe, sp. nov., latitabula Chen and Watabe, sp. nov., luguhuensis Chen and Watabe, sp. nov., nozawai Chen and Watabe, sp. nov., paraspinata Chen and Watabe, sp. nov., shangrila Chen and Watabe, sp. nov.; and ungrouped: fuscicata Chen and Zhang, sp. nov., wangi Chen and Zhang, sp. nov., wuyishanensis Chen and Zhang, sp. nov. A key to all species from southern China is provided. The Amiota fauna of southern China at the species-group level is compared with that of six geographic regions. The subgenus Amiota is assumed to have originated and produced many species-groups in the Oriental region of East Asia, and then the basdeni, alboguttata and rufescens species-groups might have spread to Europe and North-Central America throughout the Palearctic region of East Asia and both the apodemata, sinuata and nagatai species-groups to tropical regions of South-East Asia.