965 resultados para Wood-decaying fungi
Resumo:
The nutrient uptake response of ectomycorrhizal fungi (ECM) to different nutrient substrates is a driving force in ecosystem nutrient cycling. We hypothesized that taxa from low nitrogen (N) soils would be more likely to use organic N compared to taxa from high N soils, and that taxa from high N would be more likely to use organic phosphorus (P) sources when compared to the ECM dominant in low N soils. This study focuses on the growth response of ECM species collected over a N gradient to different forms of N and P nutrient substrates and whether ECM growth in a particular nutrient source can be related to how the ECM fungi have responded to elevated N in the field. This study found a mixed ECM response to organic and inorganic N and P treatments. High affinity N taxa expected to respond positively to inorganic N produced the phosphatase enzyme to take up organic phosphorus, but not all low affinity N taxa expected to negatively respond to organic P produced the protease enzyme to take up organic N. Interspecific variability was displayed by some high and low affinity N taxa responded and ECM intraspecific variability in response to N and P treatments was also noted. Future analysis of may show more evident ECM response patterns to inorganic and organic forms of N and P.
Resumo:
Renewable hydrocarbon biofuels are being investigated as possible alternatives to conventional liquid transportation fossil fuels like gasoline, kerosene (aviation fuel), and diesel. A diverse range of biomass feedstocks such as corn stover, sugarcane bagasse, switchgrass, waste wood, and algae, are being evaluated as candidates for pyrolysis and catalytic upgrading to produce drop-in hydrocarbon fuels. This research has developed preliminary life cycle assessments (LCA) for each feedstock-specific pathway and compared the greenhouse gas (GHG) emissions of the hydrocarbon biofuels to current fossil fuels. As a comprehensive study, this analysis attempts to account for all of the GHG emissions associated with each feedstock pathway through the entire life cycle. Emissions from all stages including feedstock production, land use change, pyrolysis, stabilizing the pyrolysis oil for transport and storage, and upgrading the stabilized pyrolysis oil to a hydrocarbon fuel are included. In addition to GHG emissions, the energy requirements and water use have been evaluated over the entire life cycle. The goal of this research is to help understand the relative advantages and disadvantages of the feedstocks and the resultant hydrocarbon biofuels based on three environmental indicators; GHG emissions, energy demand, and water utilization. Results indicate that liquid hydrocarbon biofuels produced through this pyrolysis-based pathway can achieve greenhouse gas emission savings of greater than 50% compared to petroleum fuels, thus potentially qualifying these biofuels under the US EPA RFS2 program. GHG emissions from biofuels ranged from 10.7-74.3 g/MJ from biofuels derived from sugarcane bagasse and wild algae at the extremes of this range, respectively. The cumulative energy demand (CED) shows that energy in every biofuel process is primarily from renewable biomass and the remaining energy demand is mostly from fossil fuels. The CED for biofuel range from 1.25-3.25 MJ/MJ from biofuels derived from sugarcane bagasse to wild algae respectively, while the other feedstock-derived biofuels are around 2 MJ/MJ. Water utilization is primarily from cooling water use during the pyrolysis stage if irrigation is not used during the feedstock production stage. Water use ranges from 1.7 - 17.2 gallons of water per kg of biofuel from sugarcane bagasse to open pond algae, respectively.
Resumo:
Wood burning for residential heating is prevalent in the Rocky Mountain regions of the United States. Studies have shown that wood stoves can be a significant source of PM2.5 within homes. In this study, the effectiveness of an electrostatic filter portable air purifier was evaluated (1) in a home where a wood stove was the sole heat source and (2) in a home where a wood stove was used as a supplemental heat source. Particle count concentrations in six particle sizes and particle mass concentrations in two particle sizes weremeasured for ten 12-hour purifier on and ten purifier off trials in each home. Particle count concentrations were reduced by 61–85 percent. Similar reductions were observed in particle mass concentrations. These findings, although limited to one season, suggest that a portable air purifier may effectively reduce indoor particulate matter concentrations associated with wood combustion during home heating.
Resumo:
Plane table and pacing methods were used in the mapping of the individual areas, but an automobile traverse was used to tie the independent areas into a composite group that would be useful for the entire zone. All land marks, section corners, roads, fence lines, drainage, and geologic features were plotted in the field and later transferred to a master map.
Resumo:
Für eine Beurteilung von Produkten bzw. Produktsystemen im Maschinenbau spielen neben technischen Kennwerten immer mehr die Umweltauswirkungen der Systeme eine wichtige Rolle. Diese Anforderungen haben die Nachfrage für nachhaltige und umweltfreundliche Konstruktionswerkstoffe im Maschinenbau erhöht. Eine Möglichkeit für solche ökologisch vorteilhaften Werkstoffe stellen ausgewählte Holzwerkstoffe dar. Mit diesen Holzwerkstoffen sollen technische Produkte entwickelt werden, welche den Unternehmen die Möglichkeit eröffnet, ihren unternehmerischen Beitrag zur Nachhaltigkeit zu steigern und wirtschaftliche Vorteile zu erzielen. Durch diesen Ansatz ist ein gewisses Maß an Ressourcen- und Energieeffizienz verbunden, dass sich kurzfristig und / oder langfristig wirtschaftlich lohnt. Ein damit verbundener gesellschaftlicher Imagegewinn erzeugt einen zusätzlichen Nutzen. Als sogenannte GLP (Green Logistics Plant) wird diese Art der Holzkonstruktion gegenwärtig im Bereich der Fördertechnik entwickelt und angewendet. Ein Anwendungsbeispiel innerhalb der GLP stellt das Gestellsystem für einen Skidförderer dar. Um die ökologische Wirkung der Konstruktionswerkstoffe transparent und nachvollziehbar zu untersuchen, werden vordergründig die Kategorien des Treibhauspotenzials und des (Primär-) Energieaufwandes genutzt. Weiterhin werden die Wirkungskategorien Versauerung, Eutrophierung, Sommersmog und Ozonabbau analysiert. Ergänzend zu bestehenden Untersuchungen soll die ökologische Vorteilhaftigkeit von Holzfurnierlagenverbundwerkstoffe (Wood Veneer Composite – WVC), Baustahl, verzinktem Stahl und Aluminiumlegierungen in der Lebensphase Produktion untersucht werden. Anschließend werden die Ergebnisse auf das Gestell eines Skid-Fördersystems aus WVC und Baustahl übertragen.
Resumo:
The reconstruction of past flash floods in ungauged basins leads to a high level of uncertainty, which increases if other processes are involved such as the transport of large wood material. An important flash flood occurred in 1997 in Venero Claro (Central Spain), causing significant economic losses. The wood material clogged bridge sections, raising the water level upstream. The aim of this study was to reconstruct this event, analysing the influence of woody debris transport on the flood hazard pattern. Because the reach in question was affected by backwater effects due to bridge clogging, using only high water mark or palaeostage indicators may overestimate discharges, and so other methods are required to estimate peak flows. Therefore, the peak discharge was estimated (123 ± 18 m3 s–1) using indirect methods, but one-dimensional hydraulic simulation was also used to validate these indirect estimates through an iterative process (127 ± 33 m3 s–1) and reconstruct the bridge obstruction to obtain the blockage ratio during the 1997 event (~48%) and the bridge clogging curves. Rainfall–Runoff modelling with stochastic simulation of different rainfall field configurations also helped to confirm that a peak discharge greater than 150 m3 s–1 is very unlikely to occur and that the estimated discharge range is consistent with the estimated rainfall amount (233 ± 27 mm). It was observed that the backwater effect due to the obstruction (water level ~7 m) made the 1997 flood (~35-year return period) equivalent to the 50-year flood. This allowed the equivalent return period to be defined as the recurrence interval of an event of specified magnitude, which, where large woody debris is present, is equivalent in water depth and extent of flooded area to a more extreme event of greater magnitude. These results highlight the need to include obstruction phenomena in flood hazard analysis.
Resumo:
Disentangling biotic and abiotic drivers of wild mushroom fruiting is fraught with difficulties because mycelial growth is hidden belowground, symbiotic and saprotrophic supply strategies may interact, and myco-ecological observations are often either discontinuous or too short. Here, we compiled and analyzed 115 417 weekly fungal fruit body counts from permanent Swiss inventories between 1975 and 2006. Mushroom fruiting exhibited an average autumnal delay of 12 days after 1991 compared with before, the annual number of fruit bodies increased from 1801 to 5414 and the mean species richness doubled from 10 to 20. Intra- and interannual coherency of symbiotic and saprotrophic mushroom fruiting, together with little agreement between mycorrhizal yield and tree growth suggests direct climate controls on fruit body formation of both nutritional modes. Our results contradict a previously reported declining of mushroom harvests and propose rethinking the conceptual role of symbiotic pathways in fungi-host interaction. Moreover, this conceptual advancement may foster new cross-disciplinary research avenues, and stimulate questions about possible amplifications of the global carbon cycle, as enhanced fungal production in moist mid-latitude forests rises carbon cycling and thus increases greenhouse gas exchanges between terrestrial ecosystems and the atmosphere.
Resumo:
•Symbioses between plant roots and mycorrhizal fungi are thought to enhance plant uptake of nutrients through a favourable exchange for photosynthates. Ectomycorrhizal fungi are considered to play this vital role for trees in nitrogen (N)-limited boreal forests. •We followed symbiotic carbon (C)–N exchange in a large-scale boreal pine forest experiment by tracing 13CO2 absorbed through tree photosynthesis and 15N injected into a soil layer in which ectomycorrhizal fungi dominate the microbial community. •We detected little 15N in tree canopies, but high levels in soil microbes and in mycorrhizal root tips, illustrating effective soil N immobilization, especially in late summer, when tree belowground C allocation was high. Additions of N fertilizer to the soil before labelling shifted the incorporation of 15N from soil microbes and root tips to tree foliage. •These results were tested in a model for C–N exchange between trees and mycorrhizal fungi, suggesting that ectomycorrhizal fungi transfer small fractions of absorbed N to trees under N-limited conditions, but larger fractions if more N is available. We suggest that greater allocation of C from trees to ectomycorrhizal fungi increases N retention in soil mycelium, driving boreal forests towards more severe N limitation at low N supply.