964 resultados para Wistar Rats
Resumo:
INTRODUCTION It is known that the vascular morphology and functionality are changed following closed soft tissue trauma (CSTT) [1], and bone fractures [2]. The disruption of blood vessels may lead to hypoxia and necrosis. Currently, most clinical methods for the diagnosis and monitoring of CSTT with or without bone fractures are primarily based on qualitative measures or practical experience, making the diagnosis subjective and inaccurate. There is evidence that CSTT and early vascular changes following the injury delay the soft tissue tissue and bone healing [3]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma is currently missing. In this research, we aim to establish a diagnostic framework to assess the 3D vascular morphological changes after standardized CSTT in a rat model qualitatively and quantitatively using contrast-enhanced micro-CT imaging. METHODS An impact device was used for the application of a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetized male Wistar rats. After euthanizing the animals at 6 hours, 24 hours, 3 days, 7 days, or 14 days after trauma, CSTT was qualitatively evaluated by macroscopic visual observation of the skin and muscles. For visualization of the vasculature, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. After allowing the contrast agent to polymerize overnight, both hind-limbs were dissected, and then the whole injured and contra-lateral control limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) to evaluate the vascular morphological changes. Correlated biopsy samples were also taken from the CSTT region of both injured and control legs. The morphological parameters such as the vessel volume ratio (VV/TV), vessel diameter (V.D), spacing (V.Sp), number (V.N), connectivity (V.Conn) and the degree of anisotropy (DA) were then quantified by evaluating the scans of biopsy samples using the micro-CT imaging system. RESULTS AND DISCUSSION A qualitative evaluation of the CSTT has shown that the developed impact protocols were capable of producing a defined and reproducible injury within the region of interest (ROI), resulting in a large hematoma and moderate swelling in both lateral and medial sides of the injured legs. Also, the visualization of the vascular network using 3D images confirmed the ability to perfuse the large vessels and a majority of the microvasculature consistently (Figure 1). Quantification of the vascular morphology obtained from correlated biopsy samples has demonstrated that V.D and V.N and V.Sp were significantly higher in the injured legs 24 hours after impact in comparison with the control legs (p<0.05). The evaluation of the other time points is currently progressing. CONCLUSIONS The findings of this research will contribute to a better understanding of the changes to the vascular network architecture following traumatic injuries and during healing process. When interpreted in context of functional changes, such as tissue oxygenation, this will allow for objective diagnosis and monitoring of CSTT and serve as validation for future non-invasive clinical assessment modalities.
Resumo:
Objective Current treatments for cancer pain are often inadequate, particularly when metastasis to bone is involved. The addition to the treatment regimen of another drug that has a complementary analgesic effect may increase the overall analgesia without the necessity to increase doses, thus avoiding dose-related side effects. This project investigated the synergistic effect of the addition of the potassium channel (KCNQ2–3) modulator flupirtine to morphine treatment in a rat model of prostate cancer-induced bone pain. Design Syngeneic prostate cancer cells were injected into the right tibia of male Wistar rats under anesthesia. This led to expanding tumor within the bone in 2 weeks, together with the concurrent development of hyperalgesia to noxious heat. Paw withdrawal thresholds from noxious heat were measured before and after the maximum non-sedating doses of morphine and flupirtine given alone and in combinations. Dose-response curves for morphine (0.13–5.0 mg/kg ip) and flupirtine (1.25–10.0 mg/kg ip) given alone and in fixed-dose combinations were plotted and subjected to an isobolographic analysis. Results Both morphine (ED50 = 0.74 mg/kg) and flupirtine (ED50 = 3.32 mg/kg) caused dose-related anti-hyperalgesia at doses that did not cause sedation. Isobolographic analysis revealed that there was a synergistic interaction between flupirtine and morphine. Addition of flupirtine to morphine treatment improved morphine anti-hyperalgesia, and resulted in the reversal of cancer-induced heat hyperalgesia. Conclusions These results suggest that flupirtine in combination with morphine may be useful clinically to provide better analgesia at lower morphine doses in the management of pain caused by tumors growing in bone.
Resumo:
Objective. Leconotide (CVID, AM336, CNSB004) is an omega conopeptide similar to ziconotide, which blocks voltage sensitive calcium channels. However, unlike ziconotide, which must be administered intrathecally, leconotide can be given intravenously because it is less toxic. This study investigated the antihyperalgesic potency of leconotide given intravenously alone and in combinations with morphine-administered intraperitoneally, in a rat model of bone cancer pain. Design. Syngeneic rat prostate cancer cells AT3B-1 were injected into one tibia of male Wistar rats. The tumor expanded within the bone causing hyperalgesia to heat applied to the ipsilateral hind paw. Measurements were made of the maximum dose (MD) of morphine and leconotide given alone and in combinations that caused no effect in an open-field activity monitor, rotarod, and blood pressure and heart rate measurements. Paw withdrawal thresholds from noxious heat were measured. Dose response curves for morphine (0.312–5.0 mg/kg intraperitoneal) and leconotide (0.002–200 µg/kg intravenous) given alone were plotted and responses compared with those caused by morphine and leconotide in combinations. Results. Leconotide caused minimal antihyperalgesic effects when administered alone. Morphine given alone intraperitoneally caused dose-related antihyperalgesic effects (ED50 = 2.40 ± 1.24 mg/kg), which were increased by coadministration of leconotide 20 µg/kg (morphine ED50 = 0.16 ± 1.30 mg/kg); 0.2 µg/kg (morphine ED50 = 0.39 ± 1.27 mg/kg); and 0.02 µg/kg (morphine ED50 = 1.24 ± 1.30 mg/kg). Conclusions. Leconotide caused a significant increase in reversal by morphine of the bone cancer-induced hyperalgesia without increasing the side effect profile of either drug. Clinical Implication. Translation into clinical practice of the method of analgesia described here will improve the quantity and quality of analgesia in patients with bone metastases. The use of an ordinary parenteral route for administration of the calcium channel blocker (leconotide) at low dose opens up the technique to large numbers of patients who could not have an intrathecal catheter for drug administration. Furthermore, the potentiating synergistic effect with morphine on hyperalgesia without increased side effects will lead to greater analgesia with improved quality of life.
Resumo:
Chronic kidney disease (CKD) in ageing is a burden on health systems worldwide. Rat models of age-related CKD linked with obesity and hypertension were used to investigate alterations in oxidant handling and energy metabolism to identify gene targets or markers for age-related CKD. Young adult (3 months) and old (21–24 months) spontaneously-hypertensive (SHR), normotensive Wistar-Kyoto (WKY) and Wistar rats (normotensive, obese in ageing) were compared for renal functional and physiological parameters, renal fibrosis and inflammation, oxidative stress (hemeoxygenase-1/HO-1), apoptosis and cell injury (including Bax:Bcl-2), phosphorylated and non-phosphorylated forms of oxidant and energy sensing proteins (p66Shc, AMPK), signal transduction proteins (ERK1/2, PKB), and transcription factors (NF-κB, FoxO1). All old rats were normoglycemic. Renal fibrosis, tubular epithelial apoptosis, interstitial macrophages and myofibroblasts (all p < 0.05), p66Shc/phospho-p66 (p < 0.05), Bax/Bcl-2 ratio (p < 0.05) and NF-κB expression (p < 0.01) were highest in old obese Wistars. Expression of phospho-FoxO/FoxO was elevated in old Wistars (p < 0.001) and WKYs (p < 0.01). SHRs had high levels in young and old rats. Expression of PKB, phospho-PKB, ERK1/2 and phospho-ERK1/2 were significantly elevated in all aged animals. These results suggest that obesity and hypertension have differing oxidant handling and signalling pathways that act in the pathogenesis of age-related CKD
Resumo:
Exogenous adenosine causes a monophasic dilation of the coronary vessels in paced, perfused rat heart preparations. Because levels of endogenous adenosine in paced hearts may mask the presence of high potency adenosine receptors, we have developed a method to measure coronary vascular responses in a potassium-arrested heart. Hearts from adult male, Wistar rats were perfused at a constant flow rate of 10 mL/min in the nonrecirculating, Langendorff mode, using Krebs-Henseleit buffer. After 30 min, coronary perfusion pressure was 44 +/- 1 mmHg (mean +/- SEM). Hearts were then perfused with a modified Krebs-Henseleit buffer containing 35 mM potassium. Coronary perfusion pressure increased by 84 +/- 3 mmHg. Adenosine-induced reductions in coronary perfusion pressure were expressed as a percentage of the maximal increase in pressure produced by modified Krebs-Henseleit buffer from the equilibration level. A concentration-response curve for adenosine (n = 6) was biphasic and best described by the presence of two adenosine receptors, with negative log EC50 values of 8.8 +/- 0.3 and 4.3 +/- 0.1, representing 29 +/- 3 and 71 +/- 3%, respectively, of the observed response. Interstitial adenosine sampled by microdialysis during potassium arrest was 25% of the concentration found in paced hearts. Endogenous adenosine in nonarrested hearts may obscure the biphasic response of the coronary vessels to adenosine.
Resumo:
Introduction Sphingosine-1-phosphate receptor 1 (S1P1) is crucial for regulation of immunity and bone metabolism. This study aimed to investigate the expression of S1P1 in rat periapical lesions and its relationship with receptor activator of nuclear factor kappa B ligand (RANKL) and regulatory T (Treg) cells. Methods Periapical lesions were induced by pulp exposure in the first lower molars of 55 Wistar rats. Thirty rats were killed on days 0, 7, 14, 21, 28, and 35, and their mandibles were harvested for x-ray imaging, micro–computed tomography scanning, histologic observation, immunohistochemistry, enzyme histochemistry, and double immunofluorescence analysis. The remaining 25 rats were killed on days 0, 14, 21, 28, and 35, and mandibles were harvested for flow cytometry. Results The volume and area of the periapical lesions increased from day 0 to day 21 and then remained comparably stable after day 28. S1P1-positive cells were observed in the inflammatory periapical regions; the number of S1P1-positive cells peaked at day 14 and then decreased from day 21 to day 35. The distribution of S1P1-positive cells was positively correlated with the dynamics of RANKL-positive cells but was negatively correlated with that of Treg cells. Conclusions S1P1 expression was differentially correlated with RANKL and Treg cell infiltration in the periapical lesions and is therefore a contributing factor to the pathogenesis of such lesions.
Resumo:
Prolonged maternal deprivation leads to long-term alterations in hypothalamic–pituitary–adrenal (HPA) axis activity, disturbances of auditory information processing and neurochemical changes in the adult brain, some of which are similar to that observed in schizophrenia. Here we report the adult behavioural effects of maternal deprivation (12 h on postnatal days 9 and 11) in Wistar rats on paradigms of auditory information processing (prepulse inhibition), sensitivity to dopamimetics (amphetamine-induced hyper-locomotion) and cognition (T-maze delayed alternation and Morris water-maze). In addition, we examined the long-lasting effect of chronic 21-day corticosterone treatment during the post-pubertal period (i.e., postnatal days 56–76) on each of these behavioural paradigms in maternally deprived and control rats. Behavioural testing commenced 2 weeks after the termination of corticosterone treatment. Maternal deprivation led to a significant reduction in PPI and impaired spatial learning ability in adulthood, but did not affect the behavioural response to amphetamine. Post-pubertal chronic corticosterone treatment did not have any major long-lasting effects on any of the behavioural measures in either maternally deprived or control rats. Our findings further support maternal deprivation as an animal model of specific aspects of schizophrenia.
Resumo:
The purpose of the present study was to investigate the effects of low-intensity ultrasound on bioabsorbable self-reinforced poly-L-lactide (SR-PLLA) screws and on fracture healing after SR-PLLA device fixation in experimental and clinical cancellous bone fracture. In the first experimental study, the assessment of the mechanical strengths of the SR-PLLA screws was performed after 12 weeks of daily 20-minute ultrasound exposure in vitro. In the second experimental study, 32 male Wistar rats with an experimental distal femur osteotomy fixed with an SR-PLLA rod were exposed for daily low-intensity ultrasound treatment for 21 days. The effects on the healing bone were assessed. The clinical studies consist of three prospective, randomized, and placebo-controlled series of dislocated lateral malleolar fractures fixed with one SR-PLLA screw. The total number of the patients in these series was 52. Half of the patients were provided randomly with a sham ultrasound device. The patients underwent ultrasound therapy 20 minutes daily for six weeks. Radiological bone healing was assessed both by radiographs at two, six, nine, and 12 weeks and by multidetector computed tomography (MDCT) scans at two weeks, nine weeks, and 18 months. Bone mineral density was assessed by dual-energy X-ray absorptiometry (DXA). The clinical outcome was assessed by both Olerud-Molander scoring and clinical examination of the ankle. Low-intensity ultrasound had no effects on the mechanical properties and degradation behaviour of the SR-PLLA screws in vitro. There were no obvious signs of low-intensity ultrasound-induced enhancement in the bone healing in SR-PLLA-rod-fixed metaphyseal distal femur osteotomy in rats. The biocompatibility of low-intensity ultrasound treatment and SR-PLLA was found to be good. In the clinical series low-intensity ultrasound was observed to have no obvious effects on the bone mineral density of the fractured lateral malleolus. There were no obvious differences in the radiological bone healing times of the SR-PLLA-screw-fixed lateral malleolar fractures after low-intensity ultrasound treatment. Low-intensity ultrasound did not have any effects on radiological bone morphology, bone mineral density or clinical outcome 18 months after the injury. There were no obvious findings in the present study to support the hypothesis that low-intensity pulsed ultrasound enhances bone healing in SR-PLLA-rod-fixed experimental metaphyseal distal femur osteotomy in rats or in clinical SR-PLLA-screw-fixed lateral malleolar fractures. It is important to limit the conclusions of the present set of studies only to lateral malleolar fractures fixed with an SR-PLLA screw.
Resumo:
Sydämen krooninen vajaatoiminta on merkittävä maailmanlaajuinen ongelma. Se on erilaisten sydän- ja verisuonisairauksien aiheuttama monimuotoinen oireyhtymä. Sydämen vasemman kammion hypertrofia eli sydämen seinämien paksuuntuminen on yksi keskeinen tekijä, joka voi olla sydämen vajaatoiminnan taustalla. Kohonnut verenpaine on yleisin syy, joka johtaa sydänlihaksen paksuuntumiseen. Tämä johtaa sydämen pumppaustoiminnan häiriintymiseen, erilaisten neurohormonaalisten mekanismien aktivaatioon ja edelleen sydämen vajaatoimintaan. Sydämen vajaatoiminnan neurohormonaalisista mekanismeista tärkeimmät ovat reniini-angiotensiini-aldosteroni-järjestelmän ja sympaattisen hermoston aktivaatio, sydämen rakenteiden uudelleenmuovautuminen, sydänlihassolujen apoptoosi ja systeeminen tulehdustila. Sydämen hypertrofiaa ja sen syntymistä pyritään estämään kohonneen verenpaineen lääkehoidolla. Reniini-angiotensiini-aldosteronijärjestelmällä on keskeinen merkitys sydämen vajaatoiminnassa. Sydämen vajaatoiminnan ennusteeseen vaikuttavista lääkeaineista angiotensiinikonvertasin estäjät (ACEestäjät) ovat säilyttäneet johtoasemansa jo vuosikymmenten ajan. Angiotensiinireseptoreiden salpaajien (AT1-salpaajien) odotettiin syrjäyttävän ACE-estäjät sydämen vajaatoiminnan hoidossa, mutta toistaiseksi niitä pidetään vain vaihtoehtoisina lääkkeinä. Sympaattisen hermoston aktivaatiota vähentävät β-salpaajat ovat vakiinnuttaneet asemansa toiseksi tärkeimpänä lääkeryhmänä. Diureetit ovat paljon käytetty lääkeaineryhmä sydämen vajaatoiminnan hoidossa, mutta niistä ainoastaan aldosteroniantagonisteilla on tutkitusti ennustetta parantavaa vaikutusta. Kroonisen vajaatoiminnan hoidossa käytetään edelleen myös digoksiinia. Tulevaisuudessa sydämen vajaatoiminnan ennusteeseen vaikuttavia lääkeaineita voivat olla reniinin estäjät, neutraaliendopeptidaasin estäjät, vasopressiinin antagonistit tai inflammatroisiin sytokiineihin vaikuttavat molekyylit. Erikoistyön kokeellisessa osiossa tarkoituksena oli tutkia sydämen hypertrofian kehittymistä vatsa-aortta kuristetuilla rotilla ja kalsiumherkistäjä levosimendaanin sekä AT1-salpaaja valsartaanin vaikutuksia hypertrofian kehittymiseen. Kokeellisessa osiossa arvioitiin myös sydämen hypertrofian ja vajaatoiminnan jyrsijämallina käytetyn vatsa-aortan kuristuksen (koarktaation) toimivuutta ja vaikutuksia ultraäänen avulla määritettyihin kardiovaskulaarisiin parametreihin. Vatsa-aortta kuristettiin munuaisvaltimoiden yläpuolelta. Kuristus saa aikaan verenpaineen kohoamisen ja sydämen työtaakan lisääntymisen. Pitkittyessään tila johtaa sydänlihaksen hypertrofiaan ja vajaatoimintaan. 64 eläintä jaettiin ryhmiin, siten että jokaiseen ryhmään tuli kahdeksan eläintä. Ryhmistä kolmelle annettiin lääkeaineena levosimendaania kolmella eri päiväannoksella (0,01 mg/kg; 0,10 mg/kg; 1,00 mg/kg) ja kolmelle valsartaania kolmella eri päiväannoksella (0,10 mg/kg; 1,00 mg/kg; 10,00 mg/kg) juomaveden mukana. Lääkitys aloitettiin leikkauksen jälkeen ja jatkettiin kahdeksan viikon ajan. Kardiovaskulaariset parametrit, kuten isovolumetrinen relaksaatioaika (IVRT), vasemman kammion läpimitta systolessa ja diastolessa sekä seinämäpaksuudet, ejektiofraktio (EF), supistuvuusosuus (FS), minuuttitilavuus (CO) ja iskutilavuus (SV) määritettiin kahdeksan viikon kuluttua leikkauksesta ultraäänitutkimuksen avulla. Lisäksi määritettiin eläinten sydämen paino suhteessa ruumiin painoon. Tuloksia verrattiin ilman lääkehoitoa olleeseen koarktaatioryhmään. Eläinmallin toimivuutta arvioitiin vertaamalla koarktaatioryhmän tuloksia sham-operoidun ryhmän tuloksiin. Levosimendaanilla havaittiin työssä sydämen systolista toimintaa parantava vaikutus. Tämä näkyi tendenssinä parantaa ejektiofraktioita ja vasemman kammion supistuvuusosuuksia. Sydämen diastoliseen toimintaan ei kummallakaan lääkeaineella ollut merkittävää vaikutusta. Diastolista toimintaa arvioitiin isovolumetrisen relaksaatioajan muutoksilla. Sydämen hypertrofian kehittymiseen ei kummallakaan lääkeaineella ollut merkittävää vaikutusta. Eläinmallin todettiin mallintavan hyvin sydämen hypetrofiaa ihmisellä, mutta ei niinkään sydämen vajaatoimintaa.
Resumo:
5-fluorouracil (FUra) has been shown to modulate the aminoacylation function of rat liver tRNA. The present study was aimed at studying the structure-function relationship of FUra-substituted tRNA. Male Wistar rats (2-3 month old) were given a single i.p. injection of FUra at 50, 250, or 500 mg/kg body wt. and FUra-substituted total liver tRNA, i.e. tRNA(FUra50, 250, and 500, respectively, were isolated 3 h later. Normal tRNA (tRNA(N)) was isolated from saline-treated control rats. Thermal denaturation studies showed higher melting temperatures for tRNA(FUra) compared to tRNA(N). Heat denaturation followed by renaturation of total tRNA did not affect the activity of tRNA(N) and tRNA(FUra50), where as tRNA(FUra250 and 500) lost 35% and 72% of activity, respectively, compared to the corresponding group of non-denatured tRNA. Antibodies specific to rat liver tRNA recognized normal and FUra-substituted tRNA in the order of tRNA(N) > tRNA(FUra50) > or = tRNA(FUra250) > tRNA(FUra500) in an avidin-biotin micro-enzyme linked immunosorbant assay. tRNA(N) or tRNA(FUra50) preincubated with tRNA antiserum showed 74% and 59% of aminoacylation activity, respectively, compared to that of corresponding tRNA preincubated with normal rabbit IgG. However, activities of similarly treated tRNA(FUra250 and 500) were not affected. The observations of possible changes in the secondary structure of rat liver tRNA upon incorporation of FUra are discussed.
Resumo:
Previous work has shown that irrespective of the route of exposure methyl isocyanate (MIC) caused acute lactic acidosis in rats (Jeevaratnam et al., Arch. Environ. Contam. Toxicol. 19, 314�319, 1990) and the hypoxia was of stagnant type due to tissue hypoperfusion resulting from hypovolemic hypotension in rabbits administered MIC subcutaneously (Jeevarathinam et al., Toxicology 51, 223�240, 1988). The present study was designed to investigate whether MIC could induce histotoxic hypoxia through its effects on mitochondrial respiration. Male Wistar rats were used for liver mitochondrial and submitochondrial particle (SMP) preparation. Addition of MIC to tightly coupled mitochondria in vitro resulted in stimulation of state 4 respiration, abolition of respiratory control, decrease in ADP/O ratio, and inhibition of state 3 oxidation. The oxidation of NAD+-linked substrates (glutamate + malate) was more sensitive (fiveto sixfold) to the inhibitory action of MIC than succinate while cytochrome oxidase remained unaffected. MIC induced twofold delay in the onset of anerobiosis, and cytochrome b reduction in SMP with NADH in vitro confirms inhibition of electron transport at complex I region. MIC also stimulated the ATPase activity in tightly coupled mitochondria while lipid peroxidation remained unaffected. As its hydrolysis products, methylamine and N,N?-dimethylurea failed to elicit any change in vitro; these effects reveal that MIC per se acts as an inhibitor of electron transport and a weak uncoupler. Administration of MIC sc at lethal dose caused a similar change only with NAD+-linked substrates, reflecting impairment of mitochondrial respiration at complex I region and thereby induction of histotoxic hypoxia in vivo.
Resumo:
We report a series of new glitazones incorporated with phenylalanine and tyrosine. All the compounds were tested for their in vitro glucose uptake activity using rat-hemidiaphragm, both in presence and absence of insulin. Six of the most active compounds from the in vitro screening were taken forward for their in vivo triglyceride and glucose lowering activity against dexamethazone induced hyperlipidemia and insulin resistance in Wistar rats. The liver samples of rats that received the most active compounds, 23 and 24, in the in vivo studies, were subjected to histopathological examination to assess their short term hepatotoxicity. The investigations on the in vitro glucose uptake, in vivo triglyceride and glucose lowering activity are described here along with the quantitative structure-activity relationships. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Psoralea corylifolia (PC), a medicinal plant, is used in traditional medicine to treat diabetes. Purpose of the research was to examine the antidiabetic and antilipemic potential of PC and to determine the relationship between its antidiabetic potential and the trace elements present. Wistar rats (150-200 g) with fasting blood glucose (FBG) of 80-110 mg dl(-1)(sub-diabetic) and 150-200 mg dl(-1)(mild diabetic) were selected for the short term antidiabetic studies and severely diabetic rats (FBG > 300 mg dl(-1)) were chosen for the long term antidiabetic and hypolipemic studies of PC seed extract. Laser induced breakdown spectroscopy (LIBS) was used to detect trace elements in the PC extract and the intensity ratios of trace elements were estimated. The dose of 250 mg kg(-1) of PC extract was found to be the most effective in lowering blood glucose level (BGL) of normal, sub, mild and severely diabetic rats during FBG and glucose tolerance test (GTT) studies. Lipid profile studies on severely diabetic rats showed substantial reduction in total cholesterol, triglycerides, very low density lipoprotein, and low density lipoprotein and an increase in the total protein, body weight, high density lipoprotein, and hemoglobin after 28 days of treatment. Significant reduction in urine sugar and protein levels was also observed. LIBS analysis of the PC extract revealed the presence of Mg, Si, Na, K, Ca, Zn and Cl. The study validates the traditional use of PC in the treatment of diabetes and confirms its antilipemic potential. The antidiabetic activity of PC extract may partly be due to the presence of appreciable amounts of insulin potentiating elements like Mg, Ca, and K.
Resumo:
We investigated the potential of using novel zoledronic acid (ZOL)-hydroxyapatite (HA) nanoparticle based drug formulation in a rat model of postmenopausal osteoporosis. By a classical adsorption method, nanoparticles of HA loaded with ZOL (HNLZ) drug formulation with a size range of 100-130 nm were prepared. 56 female Wistar rats were ovariectomized (OVX) or sham-operated at 3 months of age. Twelve weeks post surgery, rats were randomized into seven groups and treated with various doses of HNLZ (100, 50 and 25 mu g/kg, intravenous single dose), ZOL (100 mu g/kg, intravenous single dose) and HA nanoparticle (100 mu g/kg, intravenous single dose). Untreated OVX and sham OVX served as controls. After three months treatment period, we evaluated the mechanical properties of the lumbar vertebra and femoral mid-shaft. Femurs were also tested for trabecular microarchitecture. Sensitive biochemical markers of bone formation and bone resorption in serum were also determined. With respect to improvement in the mechanical strength of the lumbar spine and the femoral mid-shaft, the therapy with HNLZ drug formulation was more effective than ZOL therapy in OVX rats. Moreover, HNLZ drug therapy preserved the trabecular microarchitecture better than ZOL therapy in OVX rats. Furthermore, the HNLZ drug formulation corrected increase in serum levels of bone-specific alkaline phosphatase, procollagen type I N-terminal propeptide, osteocalcin, tartrate-resistant acid phosphatase 5b and C-telopeptide of type 1 collagen better than ZOL therapy in OVX rats. The results strongly suggest that HNLZ novel drug formulation appears to be more effective approach for treating severe osteoporosis in humans. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Objectives: A model that uses right hind-limb unloading of rats is used to study the consequences of skeletal unloading during various conditions like space flights and prolonged bed rest in elderly. This study was aimed to investigate the additive effects of antiresorptive agent zoledronic acid (ZOL), alone and in combination with propranolol (PRO) in a rat model of disuse osteoporosis. Methods: In the present study, 3-month-old male Wistar rats had their right hind-limb immobilized (RHLI) for 10 weeks to induce osteopenia, then were randomized into four groups: 1-RHLI positive control, 2-RHLI plus ZOL (50 mu g/kg, i.v. single dose), 3-RHLI plus PRO (0.1 mg/kg, s.c. 5 days per week), 4-RHLI plus PRO (0.1 mg/kg, s.c. 5 days per week) plus ZOL (50 mu g/kg, i.v. single dose) for another 10 weeks. One group of non-immobilized rats was used as negative control. At the end of treatment, the femurs were removed and tested for bone porosity, bone mechanical properties, and bone dry and ash weight. Results: With respect to improvement in the mechanical strength of the femoral mid-shaft, the combination treatment with ZOL plus PRO was more effective than ZOL or PRO monotherapy. Moreover, combination therapy using ZOL plus PRO was more effective in improving dry bone weight and preserved the cortical bone porosity better than monotherapy using ZOL or PRO in right hind-limb immobilized rats. Conclusions: These data suggest that this combined treatment with ZOL plus PRO should be recommended for the treatment of disuse osteoporosis. (C) 2014 Elsevier Editora Ltda. All rights reserved.