994 resultados para West Chester Rail Road Company.
Resumo:
La construcción de autovías disminuye el coste temporal del viaje por carretera, con efectos sobre la demanda del transporte por carretera. Pero, además de los efectos intramodales, existen efectos intermodales, puesto que las autovías afectan a la demanda en otros modos alternativos a la carretera. En este trabajo formulamos y contrastamos empíricamente un modelo que permite obtener resultados para evaluar el impacto de las autovías sobre la demanda de ferrocarril. Seguidamente se pronostican algunos efectos sobre la demanda ferroviaria de algunas actuaciones en infraestructuras viarias incluidas en el Plan Director de Infraestructuras (1993-2007).
Resumo:
Comprend : [Planche dépliante à la fin du livre]. Le portraict des trois sauvages admenez en Angleterre, leurs habits, armes, tentes et bateaux. [Représentation des moeurs et coutumes, costumes traditionnels des habitants du Grand Nord?] [Cote : BNF C104
Resumo:
Collection : Bulletin ; 83
Resumo:
Not only are we excited that Team Archaeology is back for our third ride, we are energized to be part of a “Human and Natural History” partnership that allows us expanded opportunities to share the story of Iowa’s amazing past. Once again there will be archaeologists along for the ride, as well as at Expo and this year at roadside locations Day One, Five and Six. Don’t hesitate to ask about the history of the first people to travel this landscape as well as the stories of each generation that has contributed to what we know of ourselves today. We will also feature information about the landscape and natural resources of Iowa you will encounter along the route through our partnering colleagues specializing in geology, hydrology, and other earth sciences. Enjoy using this booklet as your guide to the week’s activities and please help yourself to free materials from our outreach booth about our shared past and the natural world we depend on. Ride smart, be safe, and when you get home, be sure to tell your friends and neighbors about Iowa archaeology!
Resumo:
Iowa’s investment in the Chicago to Iowa City passenger rail service will produce more ongoing benefits than costs for Iowa residents and taxpayers over the next 30 years. An Iowa investment of $20.6 million will match a federal investment of $86.8 million for the capital costs of the Iowa segment of the Chicago to Iowa City service. Iowa’s share of the expected gap between revenues and operating and maintenance expense is estimated at $3 million annually. The economic analysis included in this document demonstrates the cost-effectiveness of the Iowa investments in the Chicago to Iowa City service and details the benefits that Iowa can expect from Iowa’s expenditures.
Resumo:
Summary
Resumo:
Iowa’s Rail Environment Iowa’s rail transportation system provides both freight and passenger service. Rail serves a variety of trips, including those within Iowa and those to other states as well as to foreign markets. While rail competes with other modes, it also cooperates with those modes to provide intermodal services to Iowans. In 2009 Iowa’s rail transportation system could be described as follows: Freight Iowa’s 130,000-mile freight transportation system includes an extensive railroad network, a well-developed highway system, two bordering navigable waterways, and a pipeline network as well as air cargo facilities. While rail accounts for only 3 percent of the freight network, it carries 43 percent of Iowa’s freight tonnage. A great variety of commodities ranging from fresh fish to textiles to optical products are moved by rail. However, most of the Iowa rail shipments consist of bulk commodities, including grain, grain products, coal, ethanol, and fertilizers. The railroad network performs an important role in moving bulk commodities produced and consumed in the state to local processors, livestock feeders, river terminals and ports for foreign export. The railroad’s ability to haul large volumes, long distances at low costs will continue to be a major factor in moving freight and improving the economy of Iowa. Key 2008 Facts • 3,945 miles of track • 18 railroads • 49.5 million tons shipped • 39.7 million tons received • 2 Amtrak routes • 6 Amtrak stations • 66,286 rail passenger rides Key Rail Trends • slightly fewer miles being operated; • railroads serving Iowa has remained the same; • more rail freight traffic; • more tons hauled per car; • higher average rail rates per ton-mile since 2002; • more car and tons hauled per locomotive; and • more ton miles per gallon of fuel consumed. Iowa’s rail system and service has been evolving over time relative to its size, financial conditions, and competition from other modes.
Resumo:
This manual summarizes the roadside tree and brush control methods used by all of Iowa's 99 counties. It is based on interviews conducted in Spring 2002 with county engineers, roadside managers and others. The target audience of this manual is the novice county engineer or roadside manager. Iowa law is nearly silent on roadside tree and brush control, so individual counties have been left to decide on the level of control they want to achieve and maintain. Different solutions have been developed but the goal of every county remains the same: to provide safe roads for the traveling public. Counties in eastern and southern Iowa appear to face the greatest brush control challenge. Most control efforts can be divided into two categories: mechanical and chemical. Mechanical control includes cutting tools and supporting equipment. A chain saw is the most widely used cutting tool. Tractor mounted boom mowers and brush cutters are used to prune miles of brush but have significant safety and aesthetic limitations and boom mowers are easily broken by inexperienced operators. The advent of tree shears and hydraulic thumbs offer unprecedented versatility. Bulldozers are often considered a method of last resort since they reduce large areas to bare ground. Any chipper that violently grabs brush should not be used. Chemical control is the application of herbicide to different parts of a plant: foliar spray is applied to leaves; basal bark spray is applied to the tree trunk; a cut stump treatment is applied to the cambium ring of a cut surface. There is reluctance by many to apply herbicide into the air due to drift concerns. One-third of Iowa counties do not use foliar spray. By contrast, several accepted control methods are directed toward the ground. Freshly cut stumps should be treated to prevent resprouting. Basal bark spray is highly effective in sensitive areas such as near houses. Interest in chemical control is slowly increasing as herbicides and application methods are refined. Fall burning, a third, distinctly separate technique is underused as a brush control method and can be effective if timed correctly. In all, control methods tend to reflect agricultural patterns in a county. The use of chain saws and foliar sprays tends to increase in counties where row crops predominate, and boom mowing tends to increase in counties where grassland predominates. For counties with light to moderate roadside brush, rotational maintenance is the key to effective control. The most comprehensive approach to control is to implement an integrated roadside vegetation management (IRVM) program. An IRVM program is usually directed by a Roadside Manager whose duties may be shared with another position. Funding for control programs comes from the Rural Services Basic portion of a county's budget. The average annual county brush control budget is about $76,000. That figure is thought not to include shared expenses such as fuel and buildings. Start up costs for an IRVM program are less if an existing control program is converted. In addition, IRVM budgets from three different northeastern Iowa counties are offered for comparison in this manual. The manual also includes a chapter on temporary traffic control in rural work zones, a summary of the Iowa Code as it relates to brush control, and rules on avoiding seasonal disturbance of the endangered Indiana bat. Appendices summarize survey and forest cover data, an equipment inventory, sample forms for record keeping, a sample brush control policy, a few legal opinions, a literature search, and a glossary.
Resumo:
Audit report on the City of West Branch, Iowa for the year ended June 30, 2011
Resumo:
Today, many of Iowa’s counties are experiencing an increase in rural development. Two specific types of development were focused on for this research: rural residential subdivisions and livestock production operations. Rural residential developments are primarily year round single-family homes, though some are vacation homes. Livestock production in Iowa includes hog, beef, and poultry facilities. These two types of rural development, while obviously very different in nature and incompatible with each other, share one important characteristic: They each generate substantial amounts of new traffic for Iowa’s extensive secondary road system. This research brings together economic, spatial, and legal analysis methods to address the impacts of rural development on the secondary road system and provide county engineers, county supervisors, and state legislators with guidance in addressing the challenges associated with this development.
Resumo:
Public travel by motor vehicles is often necessary in road and street sections that have been officially closed for construction, repair, and/or other reasons. This authorization is permitted in order to provide access to homes and businesses located beyond the point of closure. The MUTCD does address appropriate use of specific regulatory signs at the entrance to closed sections; however, direct guidance for temporary traffic control measures within these areas is not included but may be needed. Interpretation and enforcement of common practices may vary among transportation agencies. For example, some law enforcement officers in Iowa have indicated a concern regarding enforcement and jurisdiction of traffic laws in these areas because the Code of Iowa only appears to address violations on roadways open to “public travel.” Enforcement of traffic laws in closed road sections is desirable to maintain safety for workers and for specifically authorized road users. In addition, occasional unauthorized entry by motor vehicles is experienced in closed road areas causing property damage. Citations beyond simple trespass may be advisable to provide better security for construction sites, reduce economic losses from damage to completed work, and create safer work zones.
Resumo:
In an attempt to solve the bridge problem faced by many county engineers, this investigation focused on a low cost bridge alternative that consists of using railroad flatcars (RRFC) as the bridge superstructure. The intent of this study was to determine whether these types of bridges are structurally adequate and potentially feasible for use on low volume roads. A questionnaire was sent to the Bridge Committee members of the American Association of State Highway and Transportation Officials (AASHTO) to determine their use of RRFC bridges and to assess the pros and cons of these bridges based on others’ experiences. It was found that these types of bridges are widely used in many states with large rural populations and they are reported to be a viable bridge alternative due to their low cost, quick and easy installation, and low maintenance. A main focus of this investigation was to study an existing RRFC bridge that is located in Tama County, IA. This bridge was analyzed using computer modeling and field load testing. The dimensions of the major structural members of the flatcars in this bridge were measured and their properties calculated and used in an analytical grillage model. The analytical results were compared with those obtained in the field tests, which involved instrumenting the bridge and loading it with a fully loaded rear tandem-axle truck. Both sets of data (experimental and theoretical) show that the Tama County Bridge (TCB) experienced very low strains and deflections when loaded and the RRFCs appeared to be structurally adequate to serve as a bridge superstructure. A calculated load rating of the TCB agrees with this conclusion. Because many different types of flatcars exist, other flatcars were modeled and analyzed. It was very difficult to obtain the structural plans of RRFCs; thus, only two additional flatcars were analyzed. The results of these analyses also yielded very low strains and displacements. Taking into account the experiences of other states, the inspection of several RRFC bridges in Oklahoma, the field test and computer analysis of the TCB, and the computer analysis of two additional flatcars, RRFC bridges appear to provide a safe and feasible bridge alternative for low volume roads.