980 resultados para Web religious searching
Resumo:
A service is a remote computational facility which is made available for general use by means of a wide-area network. Several types of service arise in practice: stateless services, shared state services and services with states which are customised for individual users. A service-based orchestration is a multi-threaded computation which invokes remote services in order to deliver results back to a user (publication). In this paper a means of specifying services and reasoning about the correctness of orchestrations over stateless services is presented. As web services are potentially unreliable the termination of even finite orchestrations cannot be guaranteed. For this reason a partial-correctness powerdomain approach is proposed to capture the semantics of recursive orchestrations.
Resumo:
Cold-formed steel sections are often used as wall studs or floor joists; such sections often include web holes for ease of installation of the services. Cold-formed steel design codes, however, do not consider the effect of such web holes. In this paper, a combination of experimental tests and non-linear elasto-plastic finite element analyses are used to investigate the effect of such holes on web crippling under interior-two-flange (ITF) loading conditions; the cases of both flange fastened and flange unfastened are considered. A good agreement between the experimental tests and finite element analyses was obtained. The finite element model was then used for the purposes of a parametric study on the effect of different sizes and position of holes in the web. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the depth of the web, and the ratio of the distance from the edge of the bearing to the flat depth of web. Design recommendations in the form of web crippling strength reduction factors are proposed, that are conservative to both the experimental and finite element results.
Resumo:
Trophic scaling models describe how topological food-web properties such as the number of predator prey links scale with species richness of the community. Early models predicted that either the link density (i.e. the number of links per species) or the connectance (i.e. the linkage probability between any pair of species) is constant across communities. More recent analyses, however, suggest that both these scaling models have to be rejected, and we discuss several hypotheses that aim to explain the scale dependence of these complexity parameters. Based on a recent, highly resolved food-web compilation, we analysed the scaling behaviour of 16 topological parameters and found significant power law scaling relationships with diversity (i.e. species richness) and complexity (i.e. connectance) for most of them. These results illustrate the lack of universal constants in food-web ecology as a function of diversity or complexity. Nonetheless, our power law scaling relationships suggest that fundamental processes determine food-web topology, and subsequent analyses demonstrated that ecosystem-specific differences in these relationships were of minor importance. As such, these newly described scaling relationships provide robust and testable cornerstones for future structural food-web models.
Resumo:
Connectance webs represent the standard data description in food web ecology, but their usefulness is often limited in understanding the patterns and processes within ecosystems. Increasingly, efforts have been made to incorporate additional, biologically meaningful, data into food web descriptions, including the construction of food webs using data describing the body size and abundance of each species. Here, data from a terrestrial forest floor food web, sampled seasonally over a 1-year period, were analysed to investigate (i) how stable the body size abundance and predator prey relationships of an ecosystem are through time and (ii) whether there are system-specific differences in body size abundance and predator prey relationships between ecosystem types.
Manipulating Interaction Strengths and the Consequences for Trivariate Patterns in a Marine Food Web
Resumo:
We are experiencing a global extinction crisis as a result of climate change and human-induced alteration of natural habitats, with large predators at high trophic levels in food webs being particularly vulnerable. Unfortunately, there is a scarcity of food web data that can be used to assess how species extinctions alter the structure and stability of temporally and spatially replicated networks. We established a series of large experimental mesocosms in a shallow subtidal benthic marine system and constructed food webs for each replicate. After 6 months of community assembly, we removed large predators from the core communities of 20 experimental food webs, based on the strength of their trophic interactions, and monitored the changes in the networks' structure and stability over an 8-month period. Our analyses revealed the importance of allometric relationships and size-structuring in natural communities as a means of preserving food web structure and sustainability, despite significant changes in the diversity, stability and productivity of the system.
Resumo:
P>1. We established complex marine communities, consisting of over 100 species, in large subtidal experimental mesocosms. We measured the strength of direct interactions and the net strength of direct and indirect interactions between the species in those communities, using a combination of theoretical and empirical approaches.
Resumo:
The integration of detailed information on feeding interactions with measures of abundance and body mass of individuals provides a powerful platform for understanding ecosystem organisation. Metabolism and, by proxy, body mass constrain the flux, turnover and storage of energy and biomass in food webs. Here, we present the first food web data for Lough Hyne, a species rich Irish Sea Lough. Through the application of individual-and size-based analysis of the abundance-body mass relationship, we tested predictions derived from the metabolic theory of ecology. We found that individual body mass constrained the flux of biomass and determined its distribution within the food web. Body mass was also an important determinant of diet width and niche overlap, and predator diets were nested hierarchically, such that diet width increased with body mass. We applied a novel measure of predator-prey biomass flux which revealed that most interactions in Lough Hyne were weak, whereas only a few were strong. Further, the patterning of interaction strength between prey sharing a common predator revealed that strong interactions were nearly always coupled with weak interactions. Our findings illustrate that important insights into the organisation, structure and stability of ecosystems can be achieved through the theoretical exploration of detailed empirical data.
Resumo:
The major current commercial applications of semiconductor photochemistry promoted on the world wide web are reviewed. The basic principles behind the different applications are discussed, including the use of semiconductor photochemistry to: photo-mineralise organics, photo-sterilise and photo-demist. The range of companies, and their products, which utilise semiconductor photochemistry are examined and typical examples listed. An analysis of the geographical distribution of current commercial activity in this area is made. The results indicate that commercial activity in this area is growing world-wide, but is especially strong in Japan. The number and geographical distribution of patents in semiconductor photocatalysis are also commented on. The trends in the numbers of US and Japanese patents over the last 6 years are discussed. (C) 2002 Elsevier Science B.V. All rights reserved.