947 resultados para Wearable Computing Augmented Reality Interfaccia utente Smart Glass Android
Resumo:
Data sheet produced by the Iowa Department of Natural Resources is about different times of animals, insects, snakes, birds, fish, butterflies, etc. that can be found in Iowa.
Resumo:
p-toluensulfonate doped polypyrrole ~PPy!, undergoes an electric-field induced reversible transition from an insulating state to a highly conductive one. The spatially average field can be as small as 200 V/cm, when the temperature of the sample is below 20 K. The applied electric field leads to a sharp jump in the value of the current to a value which is nearly five orders of magnitude higher than before. When the applied electric field is reduced to below a critical value, the system switches back to a low conductive state. The effect is reversible, symmetric in voltage, and reproducible for different samples. The switching is, we believe, an electronic glass melting transition and it is due to the disordered, highly charged granular nature of PPy.
Resumo:
As the prevalence of obesity and diabetes are continually increasing, the use of "false sugars" otherwise known as sweeteners, and their associated health issues are being more and more discussed. A higher sugared power, less calories as well as a moderated or non-existent effect on blood sugar would lead to believe that sweeteners are helpful. However, we CANNOT say that they are THE solution as they can contain calories, may have some undesired effects, and moreover they ease the conscience without actually allowing a weight loss with their sole use. They are to be used with judgment, wittingly and especially when comparing sweetened products. The sweetener myth is often far from reality. It is therefore important to give our patients the means to analyze their dietary intake with regard to their sweeteners ingestion.
Resumo:
In this issue of the Chinese Journal of Cancer, European experts review current standards, trends, and future prospects in the difficult domain of high-grade glioma. In all fields covered by the different authors, the progress has been impressive. For example, discoveries at the molecular level have already impacted imaging, surgery, radiotherapy, and systemic therapies, and they are expected to play an increasing role in the management of these cancers. The European Organization for Research and Treatment of Cancer (EORTC) has pioneered new treatment strategies and contributed to new standards. The articles in this issue will cover basic molecular biological principles applicable today, novel surgical approaches, innovations in radiotherapy planning and delivery, evidence-based standards for radiotherapy alone or combined with chemotherapy, current standards and novel approaches for systemic treatments, and the important but often neglected field of health-related quality of life. Despite the advances described in these articles, the overall prognosis of high-grade glioma, especially glioblastoma, remains poor, and more research is needed to address this problem.
Resumo:
Usually the measurement of multi-segment foot and ankle complex kinematics is done with stationary motion capture devices which are limited to use in a gait laboratory. This study aimed to propose and validate a wearable system to measure the foot and ankle complex joint angles during gait in daily conditions, and then to investigate its suitability for clinical evaluations. The foot and ankle complex consisted of four segments (shank, hindfoot, forefoot, and toes), with an inertial measurement unit (3D gyroscopes and 3D accelerometers) attached to each segment. The angles between the four segments were calculated in the sagittal, coronal, and transverse planes using a new algorithm combining strap-down integration and detection of low-acceleration instants. To validate the joint angles measured by the wearable system, three subjects walked on a treadmill for five minutes at three different speeds. A camera-based stationary system that used a cluster of markers on each segment was used as a reference. To test the suitability of the system for clinical evaluation, the joint angle ranges were compared between a group of 10 healthy subjects and a group of 12 patients with ankle osteoarthritis, during two 50-m walking trials where the wearable system was attached to each subject. On average, over all joints and walking speeds, the RMS differences and correlation coefficients between the angular curves obtained using the wearable system and the stationary system were 1 deg and 0.93, respectively. Moreover, this system was able to detect significant alteration of foot and ankle function between the group of patients with ankle osteoarthritis and the group of healthy subjects. In conclusion, this wearable system was accurate and suitable for clinical evaluation when used to measure the multi-segment foot and ankle complex kinematics during long-distance walks in daily life conditions.
Resumo:
In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.
Resumo:
Ligament balance is an important and subjective task performed during total knee arthroplasty (TKA) procedure. For this reason, it is desirable to develop instruments to quantitatively assess the soft-tissue balance since excessive imbalance can accelerate prosthesis wear and lead to early surgical revision. The instrumented distractor proposed in this study can assist surgeons on performing ligament balance by measuring the distraction gap and applied load. Also the device allows the determination of the ligament stiffness which can contribute a better understanding of the intrinsic mechanical behavior of the knee joint. Instrumentation of the device involved the use of hall-sensors for measuring the distractor displacement and strain gauges to transduce the force. The sensors were calibrated and tested to demonstrate their suitability for surgical use. Results show the distraction gap can be measured reliably with 0.1mm accuracy and the distractive loads could be assessed with an accuracy in the range of 4N. These characteristics are consistent with those have been proposed, in this work, for a device that could assist on performing ligament balance while permitting surgeons evaluation based on his experience. Preliminary results from in vitro tests were in accordance with expected stiffness values for medial collateral ligament (MCL) and lateral collateral ligament (LCL).
Resumo:
Sudden death related to out-of hospital cardiac arrest is an important cause of mortality, which is mainly caused by ventricular fibrillation, a potentially reversible condition. The prognosis of out-of-hospital cardiac arrest remains dismal despite well developed emergency medical services. Witnessed arrest, ventricular fibrillation as the initial arrhythmia, cardiopulmonary resuscitation and early defibrillation are systematically associated with better survival. Key interventions must therefore be enforced to improve survival from out-of-hospital cardiac, introducing the concept of a "chain of survivals". The aim of the present article, which is illustrated by local results, is to review this important public health issue, to emphasize the role of the general practitioner in the chain of survival, and to promote education and training of basic and advanced life support.
Resumo:
BACKGROUND: The use of virtual reality (VR) has gained increasing interest to acquire laparoscopic skills outside the operating theatre and thus increasing patients' safety. The aim of this study was to evaluate trainees' acceptance of VR for assessment and training during a skills course and at their institution. METHODS: All 735 surgical trainees of the International Gastrointestinal Surgery Workshop 2006-2008, held in Davos, Switzerland, were given a minimum of 45 minutes for VR training during the course. Participants' opinion on VR was analyzed with a standardized questionnaire. RESULTS: Fivehundred-twenty-seven participants (72%) from 28 countries attended the VR sessions and answered the questionnaires. The possibility of using VR at the course was estimated as excellent or good in 68%, useful in 21%, reasonable in 9% and unsuitable or useless in 2%. If such VR simulators were available at their institution, most course participants would train at least one hour per week (46%), two or more hours (42%) and only 12% wouldn't use VR. Similarly, 63% of the participants would accept to operate on patients only after VR training and 55% to have VR as part of their assessment. CONCLUSION: Residents accept and appreciate VR simulation for surgical assessment and training. The majority of the trainees are motivated to regularly spend time for VR training if accessible.
Resumo:
This study looks at how increased memory utilisation affects throughput and energy consumption in scientific computing, especially in high-energy physics. Our aim is to minimise energy consumed by a set of jobs without increasing the processing time. The earlier tests indicated that, especially in data analysis, throughput can increase over 100% and energy consumption decrease 50% by processing multiple jobs in parallel per CPU core. Since jobs are heterogeneous, it is not possible to find an optimum value for the number of parallel jobs. A better solution is based on memory utilisation, but finding an optimum memory threshold is not straightforward. Therefore, a fuzzy logic-based algorithm was developed that can dynamically adapt the memory threshold based on the overall load. In this way, it is possible to keep memory consumption stable with different workloads while achieving significantly higher throughput and energy-efficiency than using a traditional fixed number of jobs or fixed memory threshold approaches.