859 resultados para WORK PERFORMANCE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Depuis une vingtaine d’années, les systèmes d’enseignement de très nombreux pays sont engagés dans des transformations profondes de leurs politiques éducatives. D’une part, on assiste progressivement à une globalisation et à une européanisation des politiques éducatives. Si elles restent formellement définies par les États, ces dernières sont de plus en plus enchâssées dans des procédures de mise en comparaison de leurs résultats (via par exemple les classements des pays produits par l’enquête Pisa de l’OCDE ; Lingard/Rawolle/Taylor, 2005 ; Mangez/Cattonar, 2009) et dans des procédures de coordination de leurs objectifs. Ainsi en Europe, les ministres de l’éducation des États-membres, avec l’aide de la Commission européenne, se sont mis d’accord sur un “Cadre européen Éducation et formation tout au long de la vie” (CEEFTLV)1. Les objectifs sont formulés en s’appuyant sur la définition d’indicateurs et de niveaux de référence de ces indicateurs (benchmark) que chaque pays s’engage à essayer d’atteindre. Les objectifs opérationnels sont formulés sous forme de “chiffres” de référence. Comme l’avance Ozga (2009), on gouverne par les “nombres”. Cette construction progressive d’un “espace européen de l’éducation” s’opère notamment par la mise en place de dispositifs de “coordination” basés sur ces outils (Lawn/Grek, 2012).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Internationally, tests of general mental ability are used in the selection of medical students. Examples include the Medical College Admission Test, Undergraduate Medicine and Health Sciences Admission Test and the UK Clinical Aptitude Test. The most widely used measure of their efficacy is predictive validity.A new tool, the Health Professions Admission Test- Ireland (HPAT-Ireland), was introduced in 2009. Traditionally, selection to Irish undergraduate medical schools relied on academic achievement. Since 2009, Irish and EU applicants are selected on a combination of their secondary school academic record (measured predominately by the Leaving Certificate Examination) and HPAT-Ireland score. This is the first study to report on the predictive validity of the HPAT-Ireland for early undergraduate assessments of communication and clinical skills. Method. Students enrolled at two Irish medical schools in 2009 were followed up for two years. Data collected were gender, HPAT-Ireland total and subsection scores; Leaving Certificate Examination plus HPAT-Ireland combined score, Year 1 Objective Structured Clinical Examination (OSCE) scores (Total score, communication and clinical subtest scores), Year 1 Multiple Choice Questions and Year 2 OSCE and subset scores. We report descriptive statistics, Pearson correlation coefficients and Multiple linear regression models. Results: Data were available for 312 students. In Year 1 none of the selection criteria were significantly related to student OSCE performance. The Leaving Certificate Examination and Leaving Certificate plus HPAT-Ireland combined scores correlated with MCQ marks.In Year 2 a series of significant correlations emerged between the HPAT-Ireland and subsections thereof with OSCE Communication Z-scores; OSCE Clinical Z-scores; and Total OSCE Z-scores. However on multiple regression only the relationship between Total OSCE Score and the Total HPAT-Ireland score remained significant; albeit the predictive power was modest. Conclusion: We found that none of our selection criteria strongly predict clinical and communication skills. The HPAT- Ireland appears to measures ability in domains different to those assessed by the Leaving Certificate Examination. While some significant associations did emerge in Year 2 between HPAT Ireland and total OSCE scores further evaluation is required to establish if this pattern continues during the senior years of the medical course.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Galway Bay wave energy test site promises to be a vital resource for wave energy researchers and developers. As part of the development of this site, a floating power system is being developed to provide power and data acquisition capabilities, including its function as a local grid connection, allowing for the connection of up to three wave energy converter devices. This work shows results from scaled physical model testing and numerical modelling of the floating power system and an oscillating water column connected with an umbilical. Results from this study will be used to influence further scaled testing as well as the full scale design and build of the floating power system in Galway Bay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been demonstrated as an alternative technique to deposit conjugated polymer films for photovoltaic applications; yet, a fundamental understanding of how the emulsion target characteristics translate into film properties and solar cell performance is unclear. Such understanding is crucial to enable the rational improvement of organic solar cell (OSC) efficiency and to realize the expected advantages of emulsion-based RIR-MAPLE for OSC fabrication. In this paper, the effect of the primary solvent used in the emulsion target is studied, both experimentally and theoretically, and it is found to determine the conjugated polymer cluster size in the emulsion as well as surface roughness and internal morphology of resulting polymer films. By using a primary solvent with low solubility-in-water and low vapor pressure, the surface roughness of deposited P3HT and PCPDTBT polymer films was reduced to 10 nm, and the efficiency of P3HT:PC61BM OSCs was increased to 3.2% (∼100 times higher compared to the first MAPLE OSC demonstration [ Caricato , A. P. ; Appl. Phys. Lett. 2012 , 100 , 073306 ]). This work unveils the mechanism of polymer film formation using emulsion-based RIR-MAPLE and provides insight and direction to determine the best ways to take advantage of the emulsion target approach to control film properties for different applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuned liquid column dampers have been proved to be successful in mitigating the dynamic responses of civil infrastructure. There have been some recent applications of this concept on wind turbines and this passive control system can help to mitigate responses of offshore floating platforms and wave devices. The control of dynamic responses of these devices is important for reducing loads on structural elements and facilitating operations and maintenance (O&M) activities. This paper outlines the use of a tuned single liquid column damper for the control of a tension leg platform supported wind turbine. Theoretical studies were carried out and a scaled model was tested in a wave basin to assess the performance of the damper. The tests on the model presented in this paper correspond to a platform with a very low natural frequency for surge, sway and yaw motions. For practical purposes, it was not possible to tune the liquid damper exactly to this frequency. The consequent approach taken and the efficiency of such approach are presented in this paper. Responses to waves of a single frequency are investigated along with responses obtained from wave spectra characterising typical sea states. The extent of control is quantified using peak and root mean squared dynamic responses respectively. The tests present some guidelines and challenges for testing scaled devices in relation to including response control mechanisms. Additionally, the results provide a basis for dictating future research on tuned liquid column damper based control on floating platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].

Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.

As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.

More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.

With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.

Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.

With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.

Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.

Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Backscatter communication is an emerging wireless technology that recently has gained an increase in attention from both academic and industry circles. The key innovation of the technology is the ability of ultra-low power devices to utilize nearby existing radio signals to communicate. As there is no need to generate their own energetic radio signal, the devices can benefit from a simple design, are very inexpensive and are extremely energy efficient compared with traditional wireless communication. These benefits have made backscatter communication a desirable candidate for distributed wireless sensor network applications with energy constraints.

The backscatter channel presents a unique set of challenges. Unlike a conventional one-way communication (in which the information source is also the energy source), the backscatter channel experiences strong self-interference and spread Doppler clutter that mask the information-bearing (modulated) signal scattered from the device. Both of these sources of interference arise from the scattering of the transmitted signal off of objects, both stationary and moving, in the environment. Additionally, the measurement of the location of the backscatter device is negatively affected by both the clutter and the modulation of the signal return.

This work proposes a channel coding framework for the backscatter channel consisting of a bi-static transmitter/receiver pair and a quasi-cooperative transponder. It proposes to use run-length limited coding to mitigate the background self-interference and spread-Doppler clutter with only a small decrease in communication rate. The proposed method applies to both binary phase-shift keying (BPSK) and quadrature-amplitude modulation (QAM) scheme and provides an increase in rate by up to a factor of two compared with previous methods.

Additionally, this work analyzes the use of frequency modulation and bi-phase waveform coding for the transmitted (interrogating) waveform for high precision range estimation of the transponder location. Compared to previous methods, optimal lower range sidelobes are achieved. Moreover, since both the transmitted (interrogating) waveform coding and transponder communication coding result in instantaneous phase modulation of the signal, cross-interference between localization and communication tasks exists. Phase discriminating algorithm is proposed to make it possible to separate the waveform coding from the communication coding, upon reception, and achieve localization with increased signal energy by up to 3 dB compared with previous reported results.

The joint communication-localization framework also enables a low-complexity receiver design because the same radio is used both for localization and communication.

Simulations comparing the performance of different codes corroborate the theoretical results and offer possible trade-off between information rate and clutter mitigation as well as a trade-off between choice of waveform-channel coding pairs. Experimental results from a brass-board microwave system in an indoor environment are also presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Depuis une vingtaine d’années, les systèmes d’enseignement de très nombreux pays sont engagés dans des transformations profondes de leurs politiques éducatives. D’une part, on assiste progressivement à une globalisation et à une européanisation des politiques éducatives. Si elles restent formellement définies par les États, ces dernières sont de plus en plus enchâssées dans des procédures de mise en comparaison de leurs résultats (via par exemple les classements des pays produits par l’enquête Pisa de l’OCDE ; Lingard/Rawolle/Taylor, 2005 ; Mangez/Cattonar, 2009) et dans des procédures de coordination de leurs objectifs. Ainsi en Europe, les ministres de l’éducation des États-membres, avec l’aide de la Commission européenne, se sont mis d’accord sur un “Cadre européen Éducation et formation tout au long de la vie” (CEEFTLV)1. Les objectifs sont formulés en s’appuyant sur la définition d’indicateurs et de niveaux de référence de ces indicateurs (benchmark) que chaque pays s’engage à essayer d’atteindre. Les objectifs opérationnels sont formulés sous forme de “chiffres” de référence. Comme l’avance Ozga (2009), on gouverne par les “nombres”. Cette construction progressive d’un “espace européen de l’éducation” s’opère notamment par la mise en place de dispositifs de “coordination” basés sur ces outils (Lawn/Grek, 2012).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980's. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) Network for Earthquake Engineering Simulation Research (NEESR) program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research examined the factors contributing to the performance of online grocers prior to, and following, the 2000 dot.com collapse. The primary goals were to assess the relationship between a company’s business model(s) and its performance in the online grocery channel and to determine if there were other company and/or market related factors that could account for company performance. To assess the primary goals, a case based theory building process was utilized. A three-way cross-case analysis comprising Peapod, GroceryWorks, and Tesco examined the common profit components, the structural category (e.g., pure-play, partnership, and hybrid) profit components, and the idiosyncratic profit components related to each specific company. Based on the analysis, it was determined that online grocery store business models could be represented at three distinct, but hierarchically, related levels. The first level was termed the core model and represented the basic profit structure that all online grocers needed in order to conduct operations. The next model level was termed the structural model and represented the profit structure associated with the specific business model configuration (i.e., pure-play, partnership, hybrid). The last model level was termed the augmented model and represented the company’s business model when idiosyncratic profit components were included. In relation to the five company related factors, scalability, rate of expansion, and the automation level were potential candidates for helping to explain online grocer performance. In addition, all the market structure related factors were deemed possible candidates for helping to explain online grocer performance. The study concluded by positing an alternative hypothesis concerning the performance of online grocers. Prior to this study, the prevailing wisdom was that the business models were the primary cause of online grocer performance. However, based on the core model analysis, it was hypothesized that the customer relationship activities (i.e., advertising, promotions, and loyalty program tie-ins) were the real drivers of online grocer performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to report the knowledge used by expert high performance gymnastic coaches in the organization of training and competition. In-depth interviews were conducted with 9 coaches who worked with male gymnasts and 8 coaches who worked with female gymnasts. Qualitative analyses showed that coaches of males and coaches of females planned training similarly, except that coaches of females appeared to emphasize esthetic and nutritional issues to a greater extent. Coaches of males revealed more concerns about the organization of gymnasts' physical conditioning. Analysis indicated that expert gymnastic coaches of males and females are constantly involved in dynamic social interactions with gymnasts, parents, and assistant coaches. Many areas of coaches' organizational work, such as dealing with the athletes' personal concerns and working with parents, are not part of the structure of coaches' training programs and emerged as crucial tasks of expert gymnastic coaches for developing elite gymnasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research addresses the impact of long-term reward patterns on contents of personal work goals among young Finnish managers (N = 747). Reward patterns were formed on the basis of perceived and objective career rewards (i.e., career stability and promotions) across four measurements (years 2006 –2012). Goals were measured in 2012 and classified into categories of competence, progression, well-being, job change, job security, organization, and financial goals. The factor mixture analysis identified a three-class solution as the best model of reward patterns: High rewards (77%); Increasing rewards (17%); and Reducing rewards (7%). Participants with Reducing rewards reported more progression, well-being, job change and financial goals than participants with High rewards as well as fewer competence and organizational goals than participants with Increasing rewards. Workplace resources can be in a key role in facilitating goals towards building competence and organizational performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Few works within the realm of the piano repertoire have amassed a reputation as formidable as Gaspard de la Nuit. These three pieces, each unique in character and pianistic requirements, arguably represent a pinnacle of early 20th-century French piano music. This paper seeks to illuminate points for consideration for the pianist who wishes to embark upon studying the work for performance, and for the musicologist.

I shall first consider the three character poems of Aloysius Bertrand that inspired the suite, as an understanding of these Diabolic creations is essential to understanding the piece analytically and programmatically. I shall then explore the subtitle of Bertrand’s Gaspard de la Nuit: ‘Fantaisies À La Manière De Rembrandt Et De Callot’, as an acknowledgement of these artists helps us better to engage with Bertrand’s poetry, and provides us with a direct link to the visual stimuli for Ravel’s compositions.

Finally, using Ondine as a case study, I shall explore how the composer unifies his inspirations to paint a musical portrait of both the character and the content of Bertrand’s poem. I shall focus on three particular aspects of Ravel’s style: the refined textures that create washes of watery colour, subtle rhythmic variations that imply the ‘deep, rolling currents of the sleeping lake’, and the simple melodic lines sung by the water nymph in the manner of a French air. Each element plays its part in the thematic development that illustrates Ondine’s seductive powers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dye-sensitized solar cell (DSSC) is currently a promising technology that makes solar energy efficient and cost-effective to harness. In DSSC, metal free dyes, such indoline-containing D149 and D205, are proved to be potential alternatives for traditional metal organic dyes. In this work, a DFT/TDDFT characterization for D149 and D205 were carried out using different functionals, including B3LYP, MPW1K, CAM-B3LYP and PBE0. Three different conformers for D149 and four different conformers for D205 were identified and calculated in vacuum. The performance of different functionals on calculating the maximum absorbance of the dyes in vacuum and five common solvents (acetonitrile, chloroform, ethanol, methanol, and THF) were examined and compared to determine the suitable computational setting for predicting properties of these two dyes. Furthermore, deprotonated D149 and D205 in solvents were also considered, and the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were calculated, which elucidates the substitution effect on the rhodanine ring of D149 and D205 dyes on their efficiency. Finally, D149 and D205 molecules were confirmed to be firmly anchored on ZnO surface by periodic DFT calculations. These results would shed light on the design of new highly efficiency metal-free dyes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work Cu1.4Mn1.6O4 (CMO) spinel oxide is prepared and evaluated as a novel cobalt-free cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Single phase CMO powder with cubic structure is identified using XRD. XPS results confirm that mixed Cu+/Cu2+ and Mn3+/Mn4+ couples exist in the CMO sample, and a maximum conductivity of 78 S cm−1 is achieved at 800 °C. Meanwhile, CMO oxide shows good thermal and chemical compatibility with a 10 mol% Sc2O3 stabilized ZrO2 (ScSZ) electrolyte material. Impedance spectroscopy measurements reveals that CMO exhibits a low polarization resistance of 0.143 Ω cm2 at 800 °C. Furthermore, a Ni-ScSZ/ScSZ/CMO single cell demonstrates a maximum power density of 1076 mW cm−2 at 800 °C under H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that Cu1.4Mn1.6O4 is a superior and promising cathode material for IT-SOFCs.