858 resultados para WOODLAND BIRDS
Resumo:
To create hydrologically sustainable wetlands, knowledge of the water use requirements of target habitats must be known. Extensive literature reviews highlighted a dearth of water-use data associated with large reedbeds and wet woodland habitats and in response to this field experiments were established. Field experiments to measure the water use rates of large reedbeds [ET(Reed)] were completed at three sites within the UK. Reference Crop Evapotranspiration [ETo] was calculated and mean monthly crop coefficients [Kc(Reed)] were developed. Kc(Reed) was less than 1 during the growing season (March to September), ranging between 0.22 in March and reaching a peak of 0.98 in June. The developed coefficients compare favourably with published data from other large reedbed systems and support the premise that the water use of large reedbeds is lower than that from small/fringe reedbeds. A methodology for determining water use rates from wet woodland habitats (UK NVC Code: W6) is presented, in addition to provisional ET(W6) rates for two sites in the UK. Reference Crop Evapotranspiration [ETo] data was used to develop Kc(W6) values which ranged between 0.89 (LV Lysimeter 1) and 1.64 (CH Lysimeter 2) for the period March to September. The data are comparable with relevant published data and show that the water use rates of wet woodland are higher than most other wetland habitats. Initial observations suggest that water use is related to the habitat’s establishment phase and the age and size of the canopy tree species. A theoretical case study presents crop coefficients associated with wetland habitats and provides an example water budget for the creation of a wetland comprising a mosaic of wetland habitats. The case study shows the critical role that the water use of wetland habitats plays within a water budget.
Resumo:
The project set out with two main aims. The first aim was to determine whether large scale multispectral aerial photography could be used to successfully survey and monitor urban wildlife habitats. The second objective was to investigate whether this data source could be used to predict population numbers of selected species expected to be found in a particular habitat type. Panchromatic, colour and colour infra-red, 1:2500 scale aerial photographs, taken in 1981 and 1984, were used. For the orderly extraction of information from the imagery, an urban wildlife habitat classification was devised. This was based on classifications already in use in urban environments by the Nature Conservancy Council. Pilot tests identified that the colour infra-red imagery provided the most accurate results about urban wildlife habitats in the study area of the Blackbrook Valley, Dudley. Both the 1981 and 1984 colour infra-red photographs were analysed and information was obtained about the type, extent and distribution of habitats. In order to investigate whether large scale aerial photographs could be used to predict likely animal population numbers in urban environments, it was decided to limit the investigation to the possible prediction of bird population numbers in Saltwells Local Nature Reserve. A good deal of research has already been completed into the development of models to predict breeding bird population numbers in woodland habitats. These models were analysed to determine whether they could be used successfully with data extracted from the aerial photographs. The projects concluded that 1:2500 scale colour infra-red photographs can provide very useful and very detailed information about the wildlife habitats in an urban area. Such imagery can also provide habitat area data to be used with population predictive models of woodland breeding birds. Using the aerial photographs, further investigations into the relationship between area of habitat and the breeding of individual bird species were inconclusive and need further research.
Resumo:
Peer reviewed
Resumo:
This work was supported by the Swiss National Science Foundation (31003A-124988/1 to PB, 31003A-138187 and 31003A-159600/1 to PC). We are grateful to the staff of La Vaux-Lierre for giving us access to the bird care centre, to Sylvie Massemin and Jean-Patrice Robin for their help in data sampling and to Olivier Glaizot and two anonymous reviewers for their comments on the manuscript.
Resumo:
When closely related species co-occur in sympatry, they face a significant challenge. They must adapt to the same local conditions in their shared environment, which favours the convergent evolution of traits, while simultaneously minimizing the costs of competition for shared resources that typically favours the divergent evolution of traits. Here, we use a comparative sister lineage approach to test how most species have responded to these conflicting selection pressures in sympatry, focusing on a key ecological trait: the bill morphology of birds. If similar bill morphologies incur fitness costs due to species interactions, then we predicted that the bill morphologies of closely related species would differ more in sympatry compared with allopatry. Alternatively, if similar bill morphologies incur fitness benefits due to local adaptation, then we predicted that the bill morphologies would be more similar in sympatry compared with allopatry. We used museum specimens to measure five aspects of bill (maxilla) morphology – depth, length, width, side shape, and bottom shape – in diverse bird species from around the world to test our alternative hypotheses. We found support for both divergent evolution and convergent evolution (or trait retention) in one ecological trait: closely related sympatric species diverged in bill depth, but converged in side shape. These patterns of bill evolution were influenced by the genetic distance between closely related sister taxa and the geographic distance between allopatric lineages. Overall, our results highlight species interactions as an important mechanism for the evolution of some (bill depth), but not all (bill shape), aspects of bill morphology in closely related species in sympatry, and provide strong support for the bill as a key ecological trait that can adapt in different ways to the conflicting challenges of sympatry.
Resumo:
Runting-stunting syndrome (RSS) in broiler chickens is an enteric disease that causes significant economic losses to poultry producers worldwide due to elevated feed conversion ratios, decreased body weight during growth, and excessive culling. Of specific interest are the viral agents associated with RSS which have been difficult to fully characterise to date. Past research into the aetiology of RSS has implicated a wide variety of RNA and DNA viruses however, to date, no individual virus has been identified as the main agent of RSS and the current opinion is that it may be caused by a community of viruses, collectively known as the virome. This paper attempts to characterise the viral pathogens associated with 2 – 3 week old RSS-affected and unaffected broiler chickens using next-generation sequencing and comparative metagenomics. Analysis of the viromes identified a total of 20 DNA & RNA viral families, along with 2 unidentified categories, comprised of 31 distinct viral genera and 7 unclassified genera. The most abundant viral families identified in this study were the Astroviridae, Caliciviridae, Picornaviridae, Parvoviridae, Coronaviridae, Siphoviridae, and Myoviridae. This study has identified historically significant viruses associated with the disease such as chicken astrovirus, avian nephritis virus, chicken parvovirus, and chicken calicivirus along with relatively novel viruses such as chicken megrivirus and sicinivirus 1 and will help expand the knowledge related to enteric disease in broiler chickens, provide insights into the viral constituents of a healthy avian gut, and identify a variety of enteric viruses and viral communities appropriate for further study.
Resumo:
Vector-borne disease emergence in recent decades has been associated with different environmental drivers including changes in habitat, hosts and climate. Lyme borreliosis is among the most important vector-borne diseases in the Northern hemisphere and is an emerging disease in Scotland. Transmitted by Ixodid tick vectors between large numbers of wild vertebrate host species, Lyme borreliosis is caused by bacteria from the Borrelia burgdorferi sensu lato species group. Ecological studies can inform how environmental factors such as host abundance and community composition, habitat and landscape heterogeneity contribute to spatial and temporal variation in risk from B. burgdorferi s.l. In this thesis a range of approaches were used to investigate the effects of vertebrate host communities and individual host species as drivers of B. burgdorferi s.l. dynamics and its tick vector Ixodes ricinus. Host species differ in reservoir competence for B. burgdorferi s.l. and as hosts for ticks. Deer are incompetent transmission hosts for B. burgdorferi s.l. but are significant hosts of all life-stages of I. ricinus. Rodents and birds are important transmission hosts of B. burgdorferi s.l. and common hosts of immature life-stages of I. ricinus. In this thesis, surveys of woodland sites revealed variable effects of deer density on B. burgdorferi prevalence, from no effect (Chapter 2) to a possible ‘dilution’ effect resulting in lower prevalence at higher deer densities (Chapter 3). An invasive species in Scotland, the grey squirrel (Sciurus carolinensis), was found to host diverse genotypes of B. burgdorferi s.l. and may act as a spill-over host for strains maintained by native host species (Chapter 4). Habitat fragmentation may alter the dynamics of B. burgdorferi s.l. via effects on the host community and host movements. In this thesis, there was lack of persistence of the rodent associated genospecies of B. burgdorferi s.l. within a naturally fragmented landscape (Chapter 3). Rodent host biology, particularly population cycles and dispersal ability are likely to affect pathogen persistence and recolonization in fragmented habitats. Heterogeneity in disease dynamics can occur spatially and temporally due to differences in the host community, habitat and climatic factors. Higher numbers of I. ricinus nymphs, and a higher probability of detecting a nymph infected with B. burgdorferi s.l., were found in areas with warmer climates estimated by growing degree days (Chapter 2). The ground vegetation type associated with the highest number of I. ricinus nymphs varied between studies in this thesis (Chapter 2 & 3) and does not appear to be a reliable predictor across large areas. B. burgdorferi s.l. prevalence and genospecies composition was highly variable for the same sites sampled in subsequent years (Chapter 2). This suggests that dynamic variables such as reservoir host densities and deer should be measured as well as more static habitat and climatic factors to understand the drivers of B. burgdorferi s.l. infection in ticks. Heterogeneity in parasite loads amongst hosts is a common finding which has implications for disease ecology and management. Using a 17-year data set for tick infestations in a wild bird community in Scotland, different effects of age and sex on tick burdens were found among four species of passerine bird (Chapter 5). There were also different rates of decline in tick burdens among bird species in response to a long term decrease in questing tick pressure over the study. Species specific patterns may be driven by differences in behaviour and immunity and highlight the importance of comparative approaches. Combining whole genome sequencing (WGS) and population genetics approaches offers a novel approach to identify ecological drivers of pathogen populations. An initial analysis of WGS from B. burgdorferi s.s. isolates sampled 16 years apart suggests that there is a signal of measurable evolution (Chapter 6). This suggests demographic analyses may be applied to understand ecological and evolutionary processes of these bacteria. This work shows how host communities, habitat and climatic factors can affect the local transmission dynamics of B. burgdorferi s.l. and the potential risk of infection to humans. Spatial and temporal heterogeneity in pathogen dynamics poses challenges for the prediction of risk. New tools such as WGS of the pathogen (Chapter 6) and blood meal analysis techniques will add power to future studies on the ecology and evolution of B. burgdorferi s.l.