991 resultados para WASTE-WATERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of dissolved, soluble and colloidal fractions of Al and Ti was assessed by ultrafiltration studies in the upper water column of the eastern tropical North Atlantic. The dissolved fractions of both metals were found to be dominated by the soluble phase smaller than 10 kDa. The colloidal associations were very low (0.2–3.4%) for Al and not detectable for Ti. These findings are in some contrast to previous estimations for Ti and to the predominant occurrence of both metals as hydrolyzed species in seawater. However, low tendencies to form inorganic colloids can be expected, as in seawater dissolved Al and dissolved Ti are present within their inorganic solubility levels. In addition, association with functional organic groups in the colloidal phase is unlikely for both metals. Vertical distributions of the dissolved fractions showed surface maxima with up to 43 nM of Al and 157 pM of Ti, reflecting their predominant supply from atmospheric sources to the open ocean. In the surface waters, excess dissolved Al over dissolved Ti was present compared to the crustal source, indicating higher solubility and thus elevated inputs of dissolved Al from atmospheric mineral particles. At most stations, subsurface minima of Al and Ti were observed and can be ascribed to scavenging processes and/or biological uptake. The dissolved Al concentrations decreased by 80–90% from the surface maximum to the subsurface minimum. Estimated residence times in the upper 100 m of the water column ranged between 1.6 and 4 years for dissolved Al and between 14 and 17 years for dissolved Ti. The short residence times are in some contrast to the low colloidal associations of Al and Ti and the assumed role of colloids as intermediates in scavenging processes. This suggests that either the removal of both metals occurs predominantly via direct transfer of the hydrolyzed species into the particulate fraction or that the colloidal phase is rapidly turned over in the upper water column.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oceanic methanol, acetaldehyde, and acetone concentrations were measured during an Atlantic Meridional Transect (AMT) cruise from the UK to Chile (49°N to 39°S) in 2009. Methanol (48–361 nM) and acetone (2–24 nM) varied over the track with enrichment in the oligotrophic Northern Atlantic Gyre. Acetaldehyde showed less variability (3–9 nM) over the full extent of the transect. These oxygenated volatile organic compounds (OVOCs) were also measured subsurface, with methanol and acetaldehyde mostly showing homogeneity throughout the water column. Acetone displayed a reduction below the mixed layer. OVOC concentrations did not consistently correlate with primary production or chlorophyll-a levels in the surface Atlantic Ocean. However, we did find a novel and significant negative relationship between acetone concentration and bacterial leucine incorporation, suggesting that acetone might be removed by marine bacteria as a source of carbon. Microbial turnover of both acetone and acetaldehyde was confirmed. Modeled atmospheric data are used to estimate the likely air-side OVOC concentrations. The direction and magnitude of air-sea fluxes vary for all three OVOCs depending on location. We present evidence that the ocean may exhibit regions of acetaldehyde under-saturation. Extrapolation suggests that the Atlantic Ocean represents an overall source of these OVOCs to the atmosphere at 3, 3, and 1 Tg yr−1 for methanol, acetaldehyde, and acetone, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic biomass size spectra (BSS) and normalized biomass size spectra were constructed, and benthic secondary production was estimated by a size spectrum equation in the shallow waters in the East China Sea, ranging latitudinally from 40A degrees N to 29A degrees N. The BSS patterns were bimodal, two biomass peaks corresponding to meiofauna and macrofauna, respectively, separated by a trough of low biomass at 8-256 mu g individual dry weight which varied in position with median sediment particle size. The BSS also displayed bimodality within meiofauna size ranges, which in most stations was due to the relative proportions of nematodes and other meiofauna taxa. Re-analysis of data from sites in the UK, South Africa, and Antarctic showed a similar bimodality in the adult species body size distribution within the meiofauna size range. Macrofaunal production estimated by the size spectrum equation was very similar to the results of Brey90 empirical equation. However, these production values were much lower than those calculated by Brey01. Different individual dry-to-wet conversion ratios, temperature deviation, and macrofauna taxonomic composition might be responsible for the between-model differences. The macrofaunal P/B ratios calculated by this equation ranged from 0.3 to 3.4 which were in accordance with values from Northern Hemisphere mid-latitudes. Meiofaunal production estimates will need further empirical support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un-supervised hyperspectral remote-sensing reflectance data (<15 km from the shore) were collected from a moving research vessel. Two different processing methods were compared. The results were similar to concurrent Aqua-MODIS and Suomi-NPP-VIIRS satellite data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oceans and coastal seas provide mankind with many benefits including food for around a third of the global population, the air that we breathe and our climate system which enables habitation of much of the planet. However, the converse is that generation of natural events (such as hurricanes, severe storms and tsunamis) can have devastating impacts on coastal populations, while pollution of the seas by pathogens and toxic waste can cause illness and death in humans and animals. Harmful effects from biogenic toxins produced by algal blooms (HABs) and from the pathogens associated with microbial pollution are also a health hazard in seafood and from direct contact with water. The overall global burden of human disease caused by sewage pollution of coastal waters has been estimated at 4 million lost person-years annually. Finally, the impacts of all of these issues will be exacerbated by climate change. A holistic systems approach is needed. It must consider whole ecosystems, and their sustainability, such as integrated coastal zone management, is necessary to address the highly interconnected scientific challenges of increased human population pressure, pollution and over-exploitation of food (and other) resources as drivers of adverse ecological, social and economic impacts. There is also an urgent and critical requirement for effective and integrated public health solutions to be developed through the formulation of politically and environmentally meaningful policies. The research community required to address "Oceans & Human Health" in Europe is currently very fragmented, and recognition by policy makers of some of the problems, outlined in the list of challenges above, is limited. Nevertheless, relevant key policy issues for governments worldwide include the reduction of the burden of disease (including the early detection of emerging pathogens and other threats) and improving the quality of the global environment. Failure to effectively address these issues will impact adversely on efforts to alleviate poverty, sustain the availability of environmental goods and services and improve health and social and economic stability; and thus, will impinge on many policy decisions, both nationally and internationally. Knowledge exchange (KE) will be a key element of any ensuing research. KE will facilitate the integration of biological, medical, epidemiological, social and economic disciplines, as well as the emergence of synergies between seemingly unconnected areas of science and socio-economic issues, and will help to leverage knowledge transfer across the European Union (EU) and beyond. An integrated interdisciplinary systems approach is an effective way to bring together the appropriate groups of scientists, social scientists, economists, industry and other stakeholders with the policy formulators in order to address the complexities of interfacial problems in the area of environment and human health. The Marine Board of the European Science Foundation Working Group on "Oceans and Human Health" has been charged with developing a position paper on this topic with a view to identifying the scientific, social and economic challenges and making recommendations to the EU on policy-relevant research and development activities in this arena. This paper includes the background to health-related issues linked to the coastal environment and highlights the main arguments for an ecosystem-based whole systems approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past years have seen the development of different approaches to detect phytoplankton groups from space. One of these methods, the PHYSAT one, is empirically based on reflectance anomalies. Despite observations in good agreement with in situ measurements, the underlying theoretical explanation of the method is still missing and needed by the ocean color community as it prevents improvements of the methods and characterization of uncertainties on the inversed products. In this study, radiative transfer simulations are used in addition to in situ measurements to understand the organization of the signals used in PHYSAT. Sensitivity analyses are performed to assess the impact of the variability of the following three parameters on the reflectance anomalies: specific phytoplankton absorption, colored dissolved organic matter absorption, and particles backscattering. While the later parameter explains the largest part of the anomalies variability, results show that each group is generally associated with a specific bio-optical environment which should be considered to improve methods of phytoplankton groups detection.