984 resultados para Volcanic ash
Resumo:
Nearly continuous cores of Quaternary fine-grained sediments with distinct dark-light colored cycles were recovered from Sites 794, 795, and 797 in the basinal parts of the Japan Sea during Leg 127. A comparison of gray value (darkness) profiles supplemented by visual inspection of core photographs between sites indicated that most of the dark and light layers were correlatable between sites, and that two of the dark layers lie close to adjacent marker ash layers. These observations indicate that deposition of dark and light layers resulted from basin-wide synchronous events. In order to understand the origin of these dark-light cycles, petrographical, mineralogical, compositional, and paleontological studies were carried out on closely spaced samples from the upper Quaternary sediments recovered from Site 797. Age model was constructed based on comparison between variation in diatom abundance and the standard oxygen isotope curve of Imbrie et al. (1984), the latter was interpolated between the five age controlled levels established at Site 797. The two curves show similar patterns which enabled us to "tune" the sediment ages to the oxygen isotope stages. We have to use variation in diatom abundance as a substitute for oxygen isotope curve since oxygen isotopic data are not available at the studied sites. Bottom water oxygenation conditions were estimated based on two criteria: (1) the degree of lamina preservation and (2) the ratio of Corg to Stot. The surface water productivity was deduced from the Corg and biogenic silica content. Results suggest that the bottom water oxygenation level and the surface water productivity varied significantly in response to the glacial-interglacial cycles. Glacio-eustatic sea-level changes and subsequent changes in water circulation in the Japan Sea appear to have been responsible for these variations and consequent changes in sediment composition throughout the Quaternary.
Resumo:
During Leg 67, the Middle-America Trench transect off Guatemala was drilled across the convergent margin of southern Mexico and Central America south of the Tehuantepec Ridge. The data of Leg 66, north of the Tehuantepec Ridge, and that of Leg 67 provided the opportunity to establish a continuous chronology of airborne volcanic ashes intercalated within the sediments (Aubouin et al., 1979; von Huene et al., 1980). Sites of both expeditions are favorably located for obtaining a good record of the explosive volcanicity of these areas, given the proximity of the volcanic sources and the position of the sites under the prevailing winds.
Resumo:
Isotopic compositions of marine sediments and fossils have been investigated from northern basins of the Mediterranean to help constrain local oceanographic and climatic changes adjacent to the uplifting Alps. Stable C and O isotope compositions of benthic and planktonic foraminifera from the Umbria-Marche region (UMC) have an offset characteristic for their habitats and the changes in composition mimic global changes, suggesting that the regional conditions of climate and the carbon cycle were controlled by global changes. The radiogenic isotope composition of these fossil assemblages allows recognition of three distinct periods. In the first period, from 25 to 19 Ma, high epsilon-Nd values and low 87Sr/86Sr of sediments and fossils support intense tectonism and volcanism, related to the opening of the western Mediterranean. In the second period, from 19 to 13 Ma the 87Sr/86Sr ratio of Mediterranean (UMC) deviate from the global ocean, which is compatible with rapid uplift of the hinterland and intense influx of Sr from Mesozoic carbonates of the western Apennines. This local control on the seawater was driven by a humid and warm climate and indicates restricted exchange of water with the global ocean. Generally, the epsilon-Nd values of the fossils are very similar to those of Indian Ocean water, with brief periods of a decrease in the epsilon-Nd values coinciding with volcanic events and maybe sea level variation at 15.2 Ma. In the third period, from 13 to 10 Ma the fossils have 87Sr/86Sr similar to those of Miocene seawater while their epsilon-Nd values change considerably with time. This indicates fluctuating influence of the Atlantic versus the Paratethys and/or locally evolved seawater in the Mediterranean driven by global sea level changes. Other investigated localities near the Alps and from the ODP 900 site are compatible with this oceanographic interpretation. However, in the late early Miocene, enhanced local control, reflecting erosion of old crustal silicate rocks near the Alps, results in higher 87Sr/86Sr.
Resumo:
Current geochronological data on the Okhotsk-Chukotka volcanic belt (OCVB) and relevant problems are discussed. The belt evolution is suggested to be modeled based on 40Ar/39Ar and U-Pb dates more useful in several aspects than common K-Ar or Rb-Sr dates and methods of paleobotanical correlation. Based on new40Ar/39Ar and U-Pb dates obtained for volcanic rocks in the OCVB northern part, the younger (Coniacian) age is established for lower stratigraphic units in the Central Chukotka segment of the belt, and eastward migration of volcanic activity is shown for terminal stages of this structure evolution.
Resumo:
Ashes occurring both as distinct layers and mixed with pelagic sediments of the hydrothermal mounds lying south of the Galapagos Rift are mainly rhyolitic and basaltic. The ashes, of rhyolitic to intermediate composition, appear to belong to a calc-alkalic series and were probably derived from Plinian eruptions in Ecuador or Colombia. Basaltic ashes are made of nonvesicular sideromelane spalling shards and are of tholeiitic composition. They probably were derived locally from fault scarps. Most rhyolitic and basaltic glass shards studied are fresh except for hydration of the rhyolitic shards. Some shards are severely altered, however. Basaltic ash may be more common in pelagic sediments deposited near accretion zones and may be a source of silica and other elements released during diagenesis
Resumo:
Results of geological studies at the submarine Vityaz Ridge carried out during cruises 37 and 41 of R/V Akademik Lavrent'ev in 2005 and 2006 are reported. The studied area is located at an near-island trench of the slope in the central part of the Kuril Island arc. Morphologically it consists of two parts: an inner volcanic arc represented by the Great Kuril Range and an outer arc corresponding to the submarine Vityaz Ridge. Diverse rocks composing the basement and the sedimentary cover of the ridge were recovered by dredging. Based on K-Ar dating and geochemistry, volcanics were divided into Paleocene, Eocene, late Oligocene, and Pliocene-Pleistocene complexes. Each of the complexes reflects a tectonomagmatic stage in the ridge evolution. Geochemical and isotope data on the volcanics indicate contribution of ancient crustal material in the magma source and, correspondingly, formation of this structure on the continental basement. Two-stage model ages (TDM2) vary in a wide range from zero values in mafic rocks to 0.77 Ga in felsic varieties, pointing to presence of Precambrian protolith in the source of the felsic rocks of the Vityaz Ridge. The Pliocene-Pleistocene volcanics are classed with tholeiitic, calc-alkaline, and subalkaline series, which differ in alkali contents and REE fractionation. Values of (La/Sm)_n and (La/Yb)_n ratios vary from 0.74 and 0.84 in the tholeiitic varieties to 1.19 and 1.44 in the calc-alkaline and 2.32 and 3.73 in the subalkaline rocks. All three varieties occur within the same volcanic edifices and formed during differentiation of magmatic melts that were channeled along fault zones from the mantle source slightly enriched in crustal component.
Resumo:
The occurrence of diatom species in the Eocene-Oligocene sections of Ocean Drilling Program (ODP) Leg 115 sites and Deep Sea Drilling Project (DSDP) Sites 219 and 236 in the low-latitude Indian Ocean are investigated. Diatoms are generally rare and poorly preserved in the Paleogene sequences we studied. The best-preserved assemblages are found close to ash layers in early Oligocene sediments. The low-latitude diatom zonation established for the Atlantic region by Fenner in 1984 is fully applicable to the Paleogene sequences of the western Indian Ocean. Correlation of the diatom zones to the calcareous nannofossil stratigraphy of the sites places the Coscinodiscus excavatus Zone of Fenner within calcareous nannofossil Subzone CP16b. For the Mascarene Plateau and the Chagos Ridge, the times when the sites studied, together with the areas upslope from them, subsided to below the euphotic zone are deduced from changes in the relative abundance between the group of benthic, shallow-water species and Grammatophora spp. vs. the group of fully planktonic diatom species. The Eocene section of Site 707, on the Mascarene Plateau, is characterized by the occurrence of benthic diatoms (approximately 10% of the diatom assemblage). These allochthonous diatoms must have originated from shallow-water environments around volcanic islands that existed upslope from ODP Site 707 in Eocene times. In Oligocene and younger sediments of Sites 707 and 706, occurrences of benthic diatoms are rare and sporadic and interpreted as reworked from older sediments. This indicates that the area upslope from these two Mascarene Plateau sites had subsided below the euphotic zone by the early Oligocene. Only Grammatophora spp., for which a neritic but not benthic habitat is assumed, continues to be abundant throughout the Oligocene sequences. The area of the Madingley Rise sites (Sites 709-710) and nearby shallower areas subsided below the euphotic zone already in middle Eocene times, as benthic diatoms are almost absent from these Eocene sections. Only sites located on abyssal plains, and which intermittently received turbidite sediments (e.g., Sites 708 and 711), contain occasionally single, benthic diatoms of Oligocene age. The occurrence of the freshwater diatom Aulacosira granulata in a few samples of late early Oligocene and late Oligocene age at Sites 707, 709, and 714 is interpreted as windblown. Their presence indicates at least seasonally arid conditions for these periods in the source areas of eastern Africa and India. Three new species and two new combinations are defined: Chaetoceros asymmetricus Fenner sp. nov.; Hemiaulus gracilis Fenner, sp. nov.; Kozloviella meniscosa Fenner, sp. nov.; Cestodiscus demergitus (Fenner) Fenner comb, nov.; and Rocella princeps (Jouse) Fenner comb. nov.