971 resultados para Video tracking
Resumo:
Bandwidth constriction and datagram loss are prominent issues that affect the perceived quality of streaming video over lossy networks, such as wireless. The use of layered video coding seems attractive as a means to alleviate these issues, but its adoption has been held back in large part by the inherent priority assigned to the critical lower layers and the consequences for quality that result from their loss. The proposed use of forward error correction (FEC) as a solution only further burdens the bandwidth availability and can negate the perceived benefits of increased stream quality. In this paper, we propose Adaptive Layer Distribution (ALD) as a novel scalable media delivery technique that optimises the tradeoff between the streaming bandwidth and error resiliency. ALD is based on the principle of layer distribution, in which the critical stream data is spread amongst all datagrams thus lessening the impact on quality due to network losses. Additionally, ALD provides a parameterised mechanism for dynamic adaptation of the scalable video, while providing increased resilience to the highest quality layers. Our experimental results show that ALD improves the perceived quality and also reduces the bandwidth demand by up to 36% in comparison to the well-known Multiple Description Coding (MDC) technique.
Resumo:
We explore the possibilities of obtaining compression in video through modified sampling strategies using multichannel imaging systems. The redundancies in video streams are exploited through compressive sampling schemes to achieve low power and low complexity video sensors. The sampling strategies as well as the associated reconstruction algorithms are discussed. These compressive sampling schemes could be implemented in the focal plane readout hardware resulting in drastic reduction in data bandwidth and computational complexity.
Resumo:
This paper introduces the concept of adaptive temporal compressive sensing (CS) for video. We propose a CS algorithm to adapt the compression ratio based on the scene's temporal complexity, computed from the compressed data, without compromising the quality of the reconstructed video. The temporal adaptivity is manifested by manipulating the integration time of the camera, opening the possibility to realtime implementation. The proposed algorithm is a generalized temporal CS approach that can be incorporated with a diverse set of existing hardware systems. © 2013 IEEE.
Resumo:
The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated which promote development and improve prognosis. Research on autism spectrum disorder (ASD) suggests that behavioral signs can be observed late in the first year of life. Many of these studies involve extensive frame-by-frame video observation and analysis of a child's natural behavior. Although nonintrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are burdensome for clinical and large population research purposes. This work is a first milestone in a long-term project on non-invasive early observation of children in order to aid in risk detection and research of neurodevelopmental disorders. We focus on providing low-cost computer vision tools to measure and identify ASD behavioral signs based on components of the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure responses to general ASD risk assessment tasks and activities outlined by the AOSI which assess visual attention by tracking facial features. We show results, including comparisons with expert and nonexpert clinicians, which demonstrate that the proposed computer vision tools can capture critical behavioral observations and potentially augment the clinician's behavioral observations obtained from real in-clinic assessments.
Resumo:
The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated that promote development and improve prognosis. Research on autism spectrum disorder (ASD) suggests behavioral markers can be observed late in the first year of life. Many of these studies involved extensive frame-by-frame video observation and analysis of a child's natural behavior. Although non-intrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are impractical for clinical and large population research purposes. Diagnostic measures for ASD are available for infants but are only accurate when used by specialists experienced in early diagnosis. This work is a first milestone in a long-term multidisciplinary project that aims at helping clinicians and general practitioners accomplish this early detection/measurement task automatically. We focus on providing computer vision tools to measure and identify ASD behavioral markers based on components of the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure three critical AOSI activities that assess visual attention. We augment these AOSI activities with an additional test that analyzes asymmetrical patterns in unsupported gait. The first set of algorithms involves assessing head motion by tracking facial features, while the gait analysis relies on joint foreground segmentation and 2D body pose estimation in video. We show results that provide insightful knowledge to augment the clinician's behavioral observations obtained from real in-clinic assessments.
Resumo:
High-throughput analysis of animal behavior requires software to analyze videos. Such software typically depends on the experiments' being performed in good lighting conditions, but this ideal is difficult or impossible to achieve for certain classes of experiments. Here, we describe techniques that allow long-duration positional tracking in difficult lighting conditions with strong shadows or recurring "on"/"off" changes in lighting. The latter condition will likely become increasingly common, e.g., for Drosophila due to the advent of red-shifted channel rhodopsins. The techniques enabled tracking with good accuracy in three types of experiments with difficult lighting conditions in our lab. Our technique handling shadows relies on single-animal tracking and on shadows' and flies' being accurately distinguishable by distance to the center of the arena (or a similar geometric rule); the other techniques should be broadly applicable. We implemented the techniques as extensions of the widely-used tracking software Ctrax; however, they are relatively simple, not specific to Drosophila, and could be added to other trackers as well.
Resumo:
Adolescence is often viewed as a time of irrational, risky decision-making - despite adolescents' competence in other cognitive domains. In this study, we examined the strategies used by adolescents (N=30) and young adults (N=47) to resolve complex, multi-outcome economic gambles. Compared to adults, adolescents were more likely to make conservative, loss-minimizing choices consistent with economic models. Eye-tracking data showed that prior to decisions, adolescents acquired more information in a more thorough manner; that is, they engaged in a more analytic processing strategy indicative of trade-offs between decision variables. In contrast, young adults' decisions were more consistent with heuristics that simplified the decision problem, at the expense of analytic precision. Collectively, these results demonstrate a counter-intuitive developmental transition in economic decision making: adolescents' decisions are more consistent with rational-choice models, while young adults more readily engage task-appropriate heuristics.
Resumo:
We present a novel system to be used in the rehabilitation of patients with forearm injuries. The system uses surface electromyography (sEMG) recordings from a wireless sleeve to control video games designed to provide engaging biofeedback to the user. An integrated hardware/software system uses a neural net to classify the signals from a user’s muscles as they perform one of a number of common forearm physical therapy exercises. These classifications are used as input for a suite of video games that have been custom-designed to hold the patient’s attention and decrease the risk of noncompliance with the physical therapy regimen necessary to regain full function in the injured limb. The data is transmitted wirelessly from the on-sleeve board to a laptop computer using a custom-designed signal-processing algorithm that filters and compresses the data prior to transmission. We believe that this system has the potential to significantly improve the patient experience and efficacy of physical therapy using biofeedback that leverages the compelling nature of video games.
Resumo:
Fractal image compression is a relatively recent image compression method. Its extension to a sequence of motion images is important in video compression applications. There are two basic fractal compression methods, namely the cube-based and the frame-based methods, being commonly used in the industry. However there are advantages and disadvantages in both methods. This paper proposes a hybrid algorithm highlighting the advantages of the two methods in order to produce a good compression algorithm for video industry. Experimental results show the hybrid algorithm improves the compression ratio and the quality of decompressed images.
Resumo:
Fractal video compression is a relatively new video compression method. Its attraction is due to the high compression ratio and the simple decompression algorithm. But its computational complexity is high and as a result parallel algorithms on high performance machines become one way out. In this study we partition the matching search, which occupies the majority of the work in a fractal video compression process, into small tasks and implement them in two distributed computing environments, one using DCOM and the other using .NET Remoting technology, based on a local area network consists of loosely coupled PCs. Experimental results show that the parallel algorithm is able to achieve a high speedup in these distributed environments.
Resumo:
Fractal image compression is a relatively recent image compression method, which is simple to use and often leads to a high compression ratio. These advantages make it suitable for the situation of a single encoding and many decoding, as required in video on demand, archive compression, etc. There are two fundamental fractal compression methods, namely, the cube-based and the frame-based methods, being commonly studied. However, there are advantages and disadvantages in both methods. This paper gives an extension of the fundamental compression methods based on the concept of adaptive partition. Experimental results show that the algorithms based on adaptive partition may obtain a much higher compression ratio compared to algorithms based on fixed partition while maintaining the quality of decompressed images.
Resumo:
The intrinsic independent features of the optimal codebook cubes searching process in fractal video compression systems are examined and exploited. The design of a suitable parallel algorithm reflecting the concept is presented. The Message Passing Interface (MPI) is chosen to be the communication tool for the implementation of the parallel algorithm on distributed memory parallel computers. Experimental results show that the parallel algorithm is able to reduce the compression time and achieve a high speed-up without changing the compression ratio and the quality of the decompressed image. A scalability test was also performed, and the results show that this parallel algorithm is scalable.
Resumo:
The authors' experience in the treatment of grey video compression using fractals is summarized and compared with other research in the same field. Experience with parallel and distributed computing is also discussed.
Resumo:
Electrodeposition is a widely used technique for the fabrication of high aspect ratio microstructures. In recent years, much research has been focused within this area aiming to understand the physics behind the filling of high aspect ratio vias and trenches on substrates and in particular how they can be made without the formation of voids in the deposited material. This paper reports on the fundamental work towards the advancement of numerical algorithms that can predict the electrodeposition process in micron scaled features. Two different numerical approaches have been developed, which capture the motion of the deposition interface and 2-D simulations are presented for both methods under two deposition regimes: those where surface kinetics is governed by Ohm’s law and the Butler–Volmer equation, respectively. In the last part of this paper the modelling of acoustic forces and their subsequent impact on the deposition profile through convection is examined.
Resumo:
A video annotation system includes clips organization, feature description and pattern determination. This paper aims to present a system for basketball zone-defence detection. Particularly, a character-angle based descriptor for feature description is proposed. The well-performed experimental results in basketball zone-defence detection demonstrate that it is robust for both simulations and real-life cases, with less sensitivity to the distribution caused by local translation of subprime defenders. Such a framework can be easily applied to other team-work sports.