981 resultados para Vibration (Marine engineering)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the teaching elements in Civil and Environmental Engineering and Spatial Science/Surveying are strongly related to multidisciplinary real-world situations. Professionals in each discipline commonly work collaboratively, knowing each other’s professional and technical limitations and requirements. Replication of such real-world situations allows students to gain an insight and acquire knowledge of professional practice for both civil engineering and spatial science disciplines. However, replication of an authentic design project is not always possible in a single unit basis where empirical project situations are often created with controlled sets of constraints, inputs and outputs. A cross-disciplinary design-based project that is designed to promote active student learning, engagement and professional integration would be the preferred option. The central aim of this collaborative project was to create positive and inclusive environments to promote engaging learning opportunities that cater for a range of learning styles with a two-way linkage involving third-year civil engineering and spatial science (surveying) students. This paper describes the cross-disciplinary project developed and delivered in 2010 and 2011. A survey was conducted at completion of the project to assess the degree of improvement in student engagement and their learning experiences. Improvements were assessed in a range of dimensions including student motivation, learning by cross-disciplinary collaboration and learning by authentic design project experiences. In this specific cross-disciplinary linkage project, the study findings showed that teaching approaches utilised have been effective in promoting active student learning and increasing engagement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building Information Modeling (BIM) is a modern approach to the design, documentation, delivery, and life cycle management of buildings through the use of project information databases coupled with object-based parametric modeling. BIM has the potential to revolutionize the Architecture, Engineering and Construction (AEC) industry in terms of the positive impact it may have on information flows, working relationships between project participants from different disciplines and the resulting benefits it may achieve through improvements to conventional methods. This chapter reviews the development of BIM, the extent to which BIM has been implemented in Australia, and the factors which have affected the up-take of BIM. More specifically, the objectives of this chapter are to investigate the adoption of BIM in the Australian AEC industry and factors that contribute towards the uptake (or non uptake) of BIM. These objectives are met by a review of the related literature in the first instance, followed by the presentation of the results of a 2007 postal questionnaire survey and telephone interviews of a random sample of professionals in the Australian AEC industry. The responses suggest that less than 25 percent of the sample had been involved in BIM – rather less than might be expected from reading the literature. Also, of those who have been involved with BIM, there has been very little interdisciplinary collaboration. The main barriers impeding the implementation of BIM widely across the Australian AEC industry are also identified. These were found to be primarily a lack of BIM expertise, lack of awareness and resistance to change. The benefits experienced as a result of using BIM are also discussed. These include improved design consistency, better coordination, cost savings, higher quality work, greater productivity and increased speed of delivery. In terms of conclusion, some suggestions are made concerning the underlying practical reasons for the slow up-take of BIM and the successes for those early adopters. Prospects for future improvement are discussed and proposals are also made for a large scale worldwide comparative study covering industry-wide participants

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper closely examines factors affecting students’ progression in their engineering programs through fieldwork conducted at three Australian universities. To extract clues on how specific teaching methods can be used to maximize learning, the investigation considered factors such as understanding how students take in, process and present information. A number of focus groups were conducted with students and the data gathered was combined with survey results of students’ and academics’ learning styles. The paper reports on the process followed, and provides some analysis of the gathered data, as part of an Australian Learning and Teaching Council, ALTC, Associate Fellowship program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-invasive vibration analysis has been used extensively to monitor the progression of dental implant healing and stabilization. It is now being considered as a method to monitor femoral implants in transfemoral amputees. This paper evaluates two modal analysis excitation methods and investigates their capabilities in detecting changes at the interface between the implant and the bone that occur during osseointegration. Excitation of bone-implant physical models with the electromagnetic shaker provided higher coherence values and a greater number of modes over the same frequency range when compared to the impact hammer. Differences were detected in the natural frequencies and fundamental mode shape of the model when the fit of the implant was altered in the bone. The ability to detect changes in the model dynamic properties demonstrates the potential of modal analysis in this application and warrants further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concrete is commonly used as a primary construction material for tall building construction. Load bearing components such as columns and walls in concrete buildings are subjected to instantaneous and long term axial shortening caused by the time dependent effects of "shrinkage", "creep" and "elastic" deformations. Reinforcing steel content, variable concrete modulus, volume to surface area ratio of the elements and environmental conditions govern axial shortening. The impact of differential axial shortening among columns and core shear walls escalate with increasing building height. Differential axial shortening of gravity loaded elements in geometrically complex and irregular buildings result in permanent distortion and deflection of the structural frame which have a significant impact on building envelopes, building services, secondary systems and the life time serviceability and performance of a building. Existing numerical methods commonly used in design to quantify axial shortening are mainly based on elastic analytical techniques and therefore unable to capture the complexity of non-linear time dependent effect. Ambient measurements of axial shortening using vibrating wire, external mechanical strain, and electronic strain gauges are methods that are available to verify pre-estimated values from the design stage. Installing these gauges permanently embedded in or on the surface of concrete components for continuous measurements during and after construction with adequate protection is uneconomical, inconvenient and unreliable. Therefore such methods are rarely if ever used in actual practice of building construction. This research project has developed a rigorous numerical procedure that encompasses linear and non-linear time dependent phenomena for prediction of axial shortening of reinforced concrete structural components at design stage. This procedure takes into consideration (i) construction sequence, (ii) time varying values of Young's Modulus of reinforced concrete and (iii) creep and shrinkage models that account for variability resulting from environmental effects. The capabilities of the procedure are illustrated through examples. In order to update previous predictions of axial shortening during the construction and service stages of the building, this research has also developed a vibration based procedure using ambient measurements. This procedure takes into consideration the changes in vibration characteristic of structure during and after construction. The application of this procedure is illustrated through numerical examples which also highlight the features. The vibration based procedure can also be used as a tool to assess structural health/performance of key structural components in the building during construction and service life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, well established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, their application, however, is associated with disadvantages. These include limited access and availability, donor site morbidity and haemorrhage, increased risk of infection, and insufficient transplant integration. As a result, recent research focuses on the development of complementary therapeutic concepts. The field of tissue engineering has emerged as an important alternative approach to bone regeneration. Tissue engineering unites aspects of cellular biology, biomechanical engineering, biomaterial sciences and trauma and orthopaedic surgery. To obtain approval by regulatory bodies for these novel therapeutic concepts the level of therapeutic benefit must be demonstrated rigorously in well characterized, clinically relevant animal models. Therefore, in this PhD project, a reproducible and clinically relevant, ovine, critically sized, high load bearing, tibial defect model was established and characterized as a prerequisite to assess the regenerative potential of a novel treatment concept in vivo involving a medical grade polycaprolactone and tricalciumphosphate based composite scaffold and recombinant human bone morphogenetic proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two major difficulties facing widespread clinical implementation of existing Tissue Engineering (TE) strategies for the treatment of musculoskeletal disorders are (1) the cost, space and time required for ex vivo culture of a patient’s autologous cells prior to re-implantation as part of a TE construct, and (2) the potential risks and availability constraints associated with transplanting exogenous (foreign) cells. These hurdles have led to recent interest in endogenous TE strategies, in which the regenerative potential of a patient’s own cells is harnessed to promote tissue regrowth without ex vivo cell culture. This article provides a focused perspective on key issues in the development of endogenous TE strategies, progress to date, and suggested future research directions toward endogenous repair and regeneration of musculoskeletal tissues and organs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper explores the results an on-going research project to identify factors influencing the success of international and non-English speaking background (NESB) gradúate students in the fields of Engineering and IT at three Australian universities: the Queensland University of Technology (QUT), the University of Western Australia (UWA), and Curtin University (CU). While the larger study explores the influence of factors from both sides of the supervision equation (e.g., students and supervisors), this paper focusses primarily on the results of an online survey involving 227 international and/or NESB graduate students in the areas of Engineering and IT at the three universities. The study reveals cross-cultural differences in perceptions of student and supervisor roles, as well as differences in the understanding of the requirements of graduate study within the Australian Higher Education context. We argue that in order to assist international and NESB research students to overcome such culturally embedded challenges, it is important to develop a model which recognizes the complex interactions of factors from both sides of the supervision relationship, in order to understand this cohort‟s unique pedagogical needs and develop intercultural sensitivity within postgraduate research supervision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, very few attempts have been made to explore the structure damage with noise polluted data which is unavoidable effect in real world. The measurement data are contaminated by noise because of test environment as well as electronic devices and this noise tend to give error results with structural damage identification methods. Therefore it is important to investigate a method which can perform better with noise polluted data. This paper introduces a new damage index using principal component analysis (PCA) for damage detection of building structures being able to accept noise polluted frequency response functions (FRFs) as input. The FRF data are obtained from the function datagen of MATLAB program which is available on the web site of the IASC-ASCE (International Association for Structural Control– American Society of Civil Engineers) Structural Health Monitoring (SHM) Task Group. The proposed method involves a five-stage process: calculation of FRFs, calculation of damage index values using proposed algorithm, development of the artificial neural networks and introducing damage indices as input parameters and damage detection of the structure. This paper briefly describes the methodology and the results obtained in detecting damage in all six cases of the benchmark study with different noise levels. The proposed method is applied to a benchmark problem sponsored by the IASC-ASCE Task Group on Structural Health Monitoring, which was developed in order to facilitate the comparison of various damage identification methods. The illustrated results show that the PCA-based algorithm is effective for structural health monitoring with noise polluted FRFs which is of common occurrence when dealing with industrial structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to mimic the formation of archerite in cave minerals, the mineral analogue has been synthesised. The cave mineral is formed by the reaction of the chemicals in bat guano with calcite substrates. X-ray diffraction proves that the synthesised archerite analogue was pure. The vibrational spectra of the synthesised mineral are compared with that of the natural cave mineral. Raman and infrared bands are assigned to H2PO4-, OH and NH stretching and bending vibrations. The Raman band at 917 cm-1 is assigned to the HOP stretching vibration of the H2PO4- units. Bands in the 1200 to 1800 cm-1 region are associated with NH4+ bending modes. Vibrational spectroscopy enables the molecular structure of archerite to be analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stringhamite CaCuSiO4·H2O is a hydrated calcium copper silicate and is commonly known as a significant ‘healing’ mineral and is potentially a semi-precious jewel. Stringhamite is a neosilicate with Cu2+ in square planar coordination. Vibrational spectroscopy has been used to characterise the molecular structure of stringhamite. The intense sharp Raman band at 956 cm−1 is assigned to the ν1 (A1g) symmetric stretching vibration. Raman bands at 980, 997, 1061 cm−1 are assigned to the ν3 (A2u, B1g) antisymmetric stretching vibrations. Splitting of the ν3 vibrational mode supports the concept that the stringhamite SiO4 tetrahedron is strongly distorted. The intense bands at 505 and 519 cm−1 and at 570 cm−1 are assigned to the ν2 and ν4 vibrational modes. The question arises as to whether the mineral stringhamite can actually function as a healing mineral. An estimation of the solubility product at pH < 5 shows that the cupric ion can be released. The copper ion is a very powerful antibiological agent and thus the mineral stringhamite may well function as a healing mineral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whelanite Ca5Cu2(OH)2CO3,Si6O17•4H2O is a hydrated hydroxy mixed anion compound with both silicate and carbonate anions in the formula. The structural characterisation of the mineral whelanite remains incomplete. Whelanite is probably a neosilicate with Cu2+ in square planar coordination. Two Raman bands at 1070 and 1094 cm-1 are assigned to the ν1 symmetric stretching modes of the CO32- units. The observation of two symmetric stretching modes supports the concept of two non-equivalent CO32- units in the whelanite structure. The intense sharp Raman band at 1006 cm-1 is assigned to the ν1 (A1g) symmetric stretching vibration of the Si6O17 units. The splitting of the ν3 vibrational mode offers support to the concept that the SiO4 tetrahedron in whelanite is strongly distorted. A very intense Raman band observed at 666 cm-1 with a shoulder at 697 cm-1 is assigned to the ν4 vibrational modes. Intense Raman bands at 3534, 3556, 3550 and 3595 cm-1 are assigned to the stretching vibrations of the OH units. Low intensity Raman bands at 2910, 3187 and 3453 cm-1 are assigned to water stretching modes. Thus, vibrational spectroscopy has been used to characterise the molecular structure of whelanite. Whelanite is a mineral that could be conceived as a healing mineral

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planchéite Cu8Si8O22(OH)4•H2O is a hydrated copper hydroxy silicate. The objective of this work is to use Raman and infrared spectroscopy to determine the molecular structure of planchéite. Raman bands of planchéite at around 1048, 1081 and 1127 are described as the ν1 –SiO3 symmetric stretching vibrations; Raman bands at 828, 906 are attributed to the ν3 –SiO3 antisymmetric stretching vibrations. The Raman band at 699 cm-1 is assigned to the ν4 bending modes of the -SiO3 units. The intense Raman band at 3479 cm-1 is ascribed to the stretching vibration of the OH units. The Raman band at 3250 cm-1 is evidence for water in the structure. A comparison of the spectra of planchéite with that of shattuckite and chrysocolla.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demands of taller structures are becoming imperative almost everywhere in the world in addition to the challenges of material and labor cost, project time line etc. This paper conducted a study keeping in view the challenging nature of high-rise construction with no generic rules for deflection minimizations and frequency control. The effects of cyclonic wind and provision of outriggers on 28-storey, 42-storey and 57-storey are examined in this paper and certain conclusions are made which would pave way for researchers to conduct further study in this particular area of civil engineering. The results show that plan dimensions have vital impacts on structural heights. Increase of height while keeping the plan dimensions same, leads to the reduction in the lateral rigidity. To achieve required stiffness increase of bracings sizes as well as introduction of additional lateral resisting system such as belt truss and outriggers is required.