990 resultados para Veicoli Elettrici Route Planning Mobilità Elettrica
Resumo:
Magnetic nanoparticles of nickel ferrite (NiFe2O4) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses confirmed the formation of single-phase nickel ferrite nanoparticles in the range 8-28 nm depending upon the annealing temperature of the samples during the synthesis. The size of the particles (d) was observed to be increasing linearly with annealing temperature of the sample while the coercivity with particle size goes through a maximum, peaking at similar to 11 nm and then decreases for larger particles. Typical blocking effects were observed below similar to 225 K for all the prepared samples. The superparamagnetic blocking temperature (T-B) was found to be increasing with increasing particle size that has been attributed to the increased effective anisotropy energy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins or dead/inert layer in these nanoparticles. (c) 2008 Elsevier B. V. All rights reserved.
Resumo:
Magnetic nanoparticles of nickel substituted cobalt ferrite (NixCo1-xFe2O4:0 <= x <= 1) have been synthesized by co-precipitation route. Particles size as estimated by the full width half maximum (FWHM) of the strongest X-ray diffraction (XRD) peak and transmission electron microscopy (TEM) techniques was found in the range 18-28 +/- 4 nm. Energy dispersive X-ray (EDX) analysis confirms the presence of Co, Ni, Fe and oxygen as well as the desired phases in the prepared nanoparticles. The selective area electron diffraction (SAED) analysis confirms the crystalline nature of the prepared nanoparticles. Data collected from the magnetization hysteresis loops of the samples show that the prepared nanoparticles are highly magnetic at room temperature. Both coercivity and saturation magnetization of the samples were found to decrease linearly with increasing Ni-concentration in cobalt ferrite. Superparamagnetic blocking temperature as determined from the zero field cooled (ZFC) magnetization curve shows a decreasing trend with increasing Ni-concentration in cobalt ferrite nanoparticles. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Magnetic nanoparticles of Ni-doped cobalt ferrite [Co1-xNixFe2O4(0 <= x <= 1)] synthesized by coprecipitation route have been studied as a function of doping concentration (x) and particle size. The size of the particles as determined by X-ray diffractometer (XRD) and transmission electron microscope (TEM) analyses was found in the range 12-48 nm. The coercivity (H-C) and saturation magnetization (M-S) showed a decreasing behavior with increasing Ni concentration. M-S of all the samples annealed at 600 degrees C lies in the range 65.8-13.7 emu/gm. Field-cooled (FC) studies of the samples showed horizontal shift (exchange bias) and vertical shift in the magnetization loop. Strong decrease in exchange bias (H-b) and vertical shift (delta M) was found for low Ni concentrations while negligible decrease was found at higher concentrations. The presence of exchange bias in the low Ni-concentration region has been explained with reference to the interface spins interaction between a surface region (with structural and spin disorder) and a ferrimagnetic core region. M(T) graphs of the samples showed a decreasing trend of blocking temperature (T-b) with increasing Ni concentration. The decrease of T-b with increasing Ni concentration has been attributed to the lower anisotropy energy of Ni+2 ions as compared to Co+2 that increases the probability of the jump across the anisotropy barrier which in turn decreases the blocking temperature of the system.
Resumo:
中国科学院近代物理研究所基于兰州重离子研究装置(HIRFL/HIRFL-CSR),在被动型束流配送系统下采用二维分层适形照射治疗技术开展重离子治癌临床试验研究。为了更好地利用重离子束在肿瘤放射治疗中的生物物理优势并保障重离子临床治疗试验的顺利实施,一个初级版本的重离子治疗计划系统已经设计完成。此计划系统是针对被动型束流配送系统下的二维分层适形照射治疗方式来进行设计的。介绍了此系统的设计框架、可提供的功能以及利用宽束算法进行剂量计算在此系统中的实现。通过人体仿真体模实验证实由该治疗计划系统给出的靶区计划剂量与实测剂量的偏差在5%之内。最后讨论了设计较为完备的重离子治疗计划系统仍需解决的问题。
Resumo:
The catalytic properties of the passivated, reduced passivated, and fresh bulk molybdenum nitride for hydrazine decomposition were evaluated in a microreactor. The reaction route of hydrazine decomposition over molybdenum nitride catalysts seems to be the same as that of Ir/gamma-Al2O3 catalysts. Below 673 K, the hydrazine decomposes into N-2 and NH3. Above 673 K, the hydrazine decomposes into N-2 and NH3 first, and then the produced NH3 further dissociates into N-2 and H-2. From the in situ FT-IR spectroscopy, hydrazine is adsorbed and decomposes mainly on the Mo site of the Mo2N/gamma-Al2O3 catalyst. (C) 2004 Elsevier Inc. All rights reserved.
Synthesis of carbon nanotube bundles with mesoporous structure by a self-assembly solvothermal route
Resumo:
A kind of carbon nanotube bundle has been synthesized by a simple one-step solvothermal reaction between Na and hexachlorobenzene (HCB) using NiCl2 as catalyst precursor. Before the reaction, NiCl2 was initially dispersed ultrasonically in cyclohexane then prereduced by Na at 230degreesC to produce small Ni particles in reduced state. The tubes thus-produced have a uniform outer diameter of about 20 nm, an inner diameter of 4 nm, and are highly ordered assembled as bundles which have a 2D hexagonal arrangement as proven by SAXS and TEM experiments.
Resumo:
Venezuela is located in central northern South America, with some 4 000 km of coastline and near 700 000 km2 of marine and submarine areas. The Venezuelan coastal zone is characterized by serious problems of land use and utilisation of its natural resources, caused by a generally anarchical spatial occupation and lack of sufficient legal and administrative means for control. In this paper, a synthesis of the Venezuelan approach to attaining a sustainable development of its marine and coastal zones is presented. This means the accomplishment of the social and economic development of the Venezuelan population in general, and specifically the coastal inhabitants, taking into account the legal and administrative patterns that govern land use planning and the utilisation of natural resources, particularly in marine and coastal areas. The paper is organised in three parts: (1) the diagnosis of the current situation; (2) the presentation of a hypothesis based on present trends (trend scenario); and (3) the statement and application of a sound and adequate solution (desirable and possible scenario).
Resumo:
The broad acceptance and collective commitment of countries to the tasks involved in the implementation of Agenda 21, Chapter 17, have profound implications vis-à-vis the interplay between coastal zone management (CZM) and national development planning (NDP). It appears that in many countries, CZM has evolved in isolation from the mainstream of national development processes. The paper examines various forms and elements for the effective integration of CZM into NDP.
Resumo:
A templateless, surfactantless, electrochemical route is proposed to directly fabricate hierarchical spherical cupreous microstructures (HSCMs) on an indium tin oxide (ITO) substrate. The as-prepared HSCMs have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD).
Resumo:
Organic-inorganic hybrid nanofibers are successfully synthesized by incorporating 3,3 ',5,5 '-tetramethylbenzidine (TMB) and H2PtCl6 at room temperature. The morphology and size can be simply controlled by tuning the molar ratio and initial concentration of reactants. A possible formation mechanism was suggested on the basis of the experimental results. The optical properties were investigated and the as-obtained product displays a strong fluorescence emission at room temperature that may be promising for applications in the fabrication of photoelectric materials. (C) 2008 Elsevier B.V. All rights reserved.