972 resultados para Vehicle Safety
Resumo:
-
Resumo:
Scoping Project: Currently no national or structured learning framework available in Aus or NZ Current Project: Develop a national training program & capability framework for rail incident investigators - Establish the potential market demand - Define the curricula for a multi-level national training program - Explore training providers & delivery options
Resumo:
The aim of this paper is to review the potential of work-related road safety as a conduit for community road safety based on research and practical experience. It covers the opportunity to target young people, family and community members through the workplace as part of a holistic approach to occupational road safety informed by the Haddon Matrix. Detailed case studies are presented based on British Telecom and Wolseley, which have both committed to community-based initiatives as part of their long-term, ongoing work-related road safety programs. Although no detailed community-based collision outcomes are available, the paper concludes that work-related road safety can be a conduit for community road safety and can provide an opportunity for researchers, policy makers and practitioners.
Resumo:
Estimated 640,700 persons suffered a work-related injury or illness in 2009-2010 and 444 lost their lives as a result in 2008-2009, in Australia Very little is known about what proportion of accidents are directly attributable to the effects of AOD Anecdotal evidence highlights issues of AOD and its association with safety risk on construction sites
Resumo:
‘Hooning’ constitutes a set of illegal and high-risk vehicle related activities typically performed by males aged 17-25, a group that is over-represented in road trauma statistics. This study used an online survey of 422 participants to test the efficacy of the Five Factor Model of Personality in predicting ‘loss of traction’ (LOT) hooning behaviour. Drivers who engaged in LOT behaviour scored significantly lower on the factor of Agreeableness than those who did not. Regression analyses indicated that the Five Factor Model of Personality was a significant predictor of LOT behaviour over and above sex and age, although Agreeableness was the only significant personality factor in the model. The findings may be used to better understand those drivers likely to engage in LOT behaviours. Road safety advertising and educational campaigns can target less socially agreeable drivers, and aim to encourage more agreeable attitudes to driving, particularly for younger male drivers.
Resumo:
Young drivers are at higher risk of crashes than other drivers when carrying passengers. Graduated Driver Licensing has demonstrated effectiveness in reducing fatalities however there is considerable potential for additional strategies to complement the approach. A survey with 276 young adults (aged 17-25 years, 64% females) was conducted to examine the potential and importance of strategies that are delivered via the Internet and potential strategies for passengers. Strategies delivered via the Internet represent opportunity for widespread dissemination and greater reach to young people at times convenient to them. The current study found some significant differences between males and females with regard to ways the Internet is used to obtain road safety information and the components valued in trusted road safety sites. There were also significant differences between males and females on the kinds of strategies used as passengers to promote driver safety and the context in which it occurred, with females tending to take more proactive strategies than males. In sum, young people see value in Internet delivery for passenger safety information (80% agreed/ strongly agreed) and more than 90% thought it was important to intervene while a passenger of a risky driver. Thus tailoring Internet road safety strategies to young people may differ for males and females however there is considerable potential for a passenger focus in strategies aimed at reducing young driver crashes.
Resumo:
Monotony has been identified as a contributing factor to road crashes. Drivers’ ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks, such as driving on Australian rural roads, many of which are monotonous by nature. Highway design in particular attempts to reduce the driver’s task to a merely lane-keeping one. Such a task provides little stimulation and is monotonous, thus affecting the driver’s attention which is no longer directed towards the road. Inattention contributes to crashes, especially for professional drivers. Monotony has been studied mainly from the endogenous perspective (for instance through sleep deprivation) without taking into account the influence of the task itself (repetitiveness) or the surrounding environment. The aim and novelty of this thesis is to develop a methodology (mathematical framework) able to predict driver lapses of vigilance under monotonous environments in real time, using endogenous and exogenous data collected from the driver, the vehicle and the environment. Existing approaches have tended to neglect the specificity of task monotony, leaving the question of the existence of a “monotonous state” unanswered. Furthermore the issue of detecting vigilance decrement before it occurs (predictions) has not been investigated in the literature, let alone in real time. A multidisciplinary approach is necessary to explain how vigilance evolves in monotonous conditions. Such an approach needs to draw on psychology, physiology, road safety, computer science and mathematics. The systemic approach proposed in this study is unique with its predictive dimension and allows us to define, in real time, the impacts of monotony on the driver’s ability to drive. Such methodology is based on mathematical models integrating data available in vehicles to the vigilance state of the driver during a monotonous driving task in various environments. The model integrates different data measuring driver’s endogenous and exogenous factors (related to the driver, the vehicle and the surrounding environment). Electroencephalography (EEG) is used to measure driver vigilance since it has been shown to be the most reliable and real time methodology to assess vigilance level. There are a variety of mathematical models suitable to provide a framework for predictions however, to find the most accurate model, a collection of mathematical models were trained in this thesis and the most reliable was found. The methodology developed in this research is first applied to a theoretically sound measure of sustained attention called Sustained Attention Response to Task (SART) as adapted by Michael (2010), Michael and Meuter (2006, 2007). This experiment induced impairments due to monotony during a vigilance task. Analyses performed in this thesis confirm and extend findings from Michael (2010) that monotony leads to an important vigilance impairment independent of fatigue. This thesis is also the first to show that monotony changes the dynamics of vigilance evolution and tends to create a “monotonous state” characterised by reduced vigilance. Personality traits such as being a low sensation seeker can mitigate this vigilance decrement. It is also evident that lapses in vigilance can be predicted accurately with Bayesian modelling and Neural Networks. This framework was then applied to the driving task by designing a simulated monotonous driving task. The design of such task requires multidisciplinary knowledge and involved psychologist Rebecca Michael. Monotony was varied through both the road design and the road environment variables. This experiment demonstrated that road monotony can lead to driving impairment. Particularly monotonous road scenery was shown to have the most impact compared to monotonous road design. Next, this study identified a variety of surrogate measures that are correlated with vigilance levels obtained from the EEG. Such vigilance states can be predicted with these surrogate measures. This means that vigilance decrement can be detected in a car without the use of an EEG device. Amongst the different mathematical models tested in this thesis, only Neural Networks predicted the vigilance levels accurately. The results of both these experiments provide valuable information about the methodology to predict vigilance decrement. Such an issue is quite complex and requires modelling that can adapt to highly inter-individual differences. Only Neural Networks proved accurate in both studies, suggesting that these models are the most likely to be accurate when used on real roads or for further research on vigilance modelling. This research provides a better understanding of the driving task under monotonous conditions. Results demonstrate that mathematical modelling can be used to determine the driver’s vigilance state when driving using surrogate measures identified during this study. This research has opened up avenues for future research and could result in the development of an in-vehicle device predicting driver vigilance decrement. Such a device could contribute to a reduction in crashes and therefore improve road safety.