946 resultados para Variable pressure scanning electron microscope


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first objective of this thesis was to examine the hygroscopic and morphological nature of various substances through the use of an Environmental Scanning Electron Microscope (ESEM). The hygroscopic growth and changes in morphology for pure-component aerosols were studied for particles greater than 2 µm in size. Hygroscopic growth was observed through changes in relative humidity (RH) and hygroscopic growth curves were created. The second objective of this thesis, the hygroscopic growth of multi-component aerosol mixtures, was studied using Hygroscopic Tandem Differential Mobility Analysis(HTDMA). The size distribution for an aerosol stream was determined before and after the stream was subjected to an increase in relative humidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this study was to evaluate the cavitation rate of proximal caries using different magnification aids in vitro. METHODS: Radiographs of 285 extracted teeth were taken and the proximal surfaces were graded to the criteria R0 (no radiolucency), R1 (radiolucency confined to the outer half of enamel), R2 (inner half of enamel) and R3 (outer half of dentin). Subsequently, the proximal surfaces were checked for the presence of cavitations with the naked eye (NE), and by using 4.3 x magnification eyeglasses (ME), a stereo microscope (SM, 10x), or a scanning electron microscope (SEM, up to 2000 x magnification). RESULTS: In surfaces with R3 caries, cavitations were visible in 56 of 59 cases with the naked eye. When using SEM, all surfaces revealed cavitations (100%). Regarding the surfaces with R2 lesion, 36 of 46 cases showed cavitations (NE); the corresponding values were 39/46 (ME), 41/46 (SM), and 46/46 (SEM); in the latter, in most cases deep defects could be observed. With regard to R1 lesions, 36/60 (NE), 43/60 (ME), 45/60 (SM), and 58/60 (SEM) cases revealed cavitations. A breakdown of radiographically sound surfaces (R0) was present in some 10% of the examined surfaces (24/261, NE; 33/261, SEM). CONCLUSIONS: Cavitations (defined as breakdown of the surface) are present in significantly more cases than previously reported. This might be an explanation why even small radiolucencies tend to progress, albeit slowly. Thus, close follow-ups should strongly be recommended when considering a preventive treatment regimen with small radiolucencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium oxide is an important semiconductor, which is widely applied for solar cells. In this research, titanium oxide nanotube arrays were synthesized by anodization of Ti foil in the electrolyte composed of ethylene glycol containing 2 vol % H2O and 0.3 wt % NH4F. The voltages of 40V-50V were employed for the anodizing process. Pore diameters and lengths of the TiO2 nanotubes were evaluated by field emission scanning electron microscope (FESEM). The obtained highly-ordered titanium nanotube arrays were exploited to fabricate photoelectrode for the Dye-sensitized solar cells (DSSCS). The TiO2 nanotubes based DSSCS exhibited an excellent performance with a high short circuit current and open circuit voltage as well as a good power conversion efficiency. Those can be attributed to the high surface area and one dimensional structure of TiO2 nanotubes, which could hold a large amount of dyes to absorb light and help electron percolation process to hinder the recombination during the electrons diffusion in the electrolyte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES Optical scanners combined with computer-aided design and computer-aided manufacturing (CAD/CAM) technology provide high accuracy in the fabrication of titanium (TIT) and zirconium dioxide (ZrO) bars. The aim of this study was to compare the precision of fit of CAD/CAM TIT bars produced with a photogrammetric and a laser scanner. METHODS Twenty rigid CAD/CAM bars were fabricated on one single edentulous master cast with 6 implants in the positions of the second premolars, canines and central incisors. A photogrammetric scanner (P) provided digitized data for TIT-P (n=5) while a laser scanner (L) was used for TIT-L (n=5). The control groups consisted of soldered gold bars (gold, n=5) and ZrO-P with similar bar design. Median vertical distance between implant and bar platforms from non-tightened implants (one-screw test) was calculated from mesial, buccal and distal scanning electron microscope measurements. RESULTS Vertical microgaps were not significantly different between TIT-P (median 16μm; 95% CI 10-27μm) and TIT-L (25μm; 13-32μm). Gold (49μm; 12-69μm) had higher values than TIT-P (p=0.001) and TIT-L (p=0.008), while ZrO-P (35μm; 17-55μm) exhibited higher values than TIT-P (p=0.023). Misfit values increased in all groups from implant position 23 (3 units) to 15 (10 units), while in gold and TIT-P values decreased from implant 11 toward the most distal implant 15. SIGNIFICANCE CAD/CAM titanium bars showed high precision of fit using photogrammetric and laser scanners. In comparison, the misfit of ZrO bars (CAM/CAM, photogrammetric scanner) and soldered gold bars was statistically higher but values were clinically acceptable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To compare the precision of fit of full-arch implant-supported screw-retained computer-aided designed and computer-aided manufactured (CAD/CAM) titanium-fixed dental prostheses (FDP) before and after veneering. The null-hypothesis was that there is no difference in vertical microgap values between pure titanium frameworks and FDPs after porcelain firing. MATERIALS AND METHODS Five CAD/CAM titanium grade IV frameworks for a screw-retained 10-unit implant-supported reconstruction on six implants (FDI tooth positions 15, 13, 11, 21, 23, 25) were fabricated after digitizing the implant platforms and the cuspid-supporting framework resin pattern with a laser scanner (CARES(®) Scan CS2; Institut Straumann AG, Basel, Switzerland). A bonder, an opaquer, three layers of porcelain, and one layer of glaze were applied (Vita Titankeramik) and fired according to the manufacturer's preheating and fire cycle instructions at 400-800°C. The one-screw test (implant 25 screw-retained) was applied before and after veneering of the FDPs to assess the vertical microgap between implant and framework platform with a scanning electron microscope. The mean microgap was calculated from interproximal and buccal values. Statistical comparison was performed with non-parametric tests. RESULTS All vertical microgaps were clinically acceptable with values <90 μm. No statistically significant pairwise difference (P = 0.98) was observed between the relative effects of vertical microgap of unveneered (median 19 μm; 95% CI 13-35 μm) and veneered FDPs (20 μm; 13-31 μm), providing support for the null-hypothesis. Analysis within the groups showed significantly different values between the five implants of the FDPs before (P = 0.044) and after veneering (P = 0.020), while a monotonous trend of increasing values from implant 23 (closest position to screw-retained implant 25) to 15 (most distant implant) could not be observed (P = 0.169, P = 0.270). CONCLUSIONS Full-arch CAD/CAM titanium screw-retained frameworks have a high accuracy. Porcelain firing procedure had no impact on the precision of fit of the final FDPs. All implant microgap measurements of each FDP showed clinically acceptable vertical misfit values before and after veneering. Thus, the results do not only show accurate performance of the milling and firing but show also a reproducible scanning and designing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ageing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons. Micropillar compression tests in a scanning electron microscope, microindentation and macroscopic compression tests were performed on dry ovine bone to identify the elastic modulus, yield stress, plastic deformation, damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a plastic behaviour, with higher yield stress and ductility but no damage. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behaviour of bone at the microscale to a quasi-brittle response driven by the growth of cracks along interfaces or in the vicinity of pores at the macroscale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity but quite similar polymerization contraction. MOD cavities (n=30) were prepared in extracted premolars, restored and then subjected to thermocyclic and mechanical loading. Marginal quality of the restorations before and after loading was analyzed on epoxy replicas under a scanning electron microscope. The percentage of gap-free margins and occurrence of paramarginal fractures were registered. Modulus of elasticity and polymerization contraction were analyzed with parametric and margins with nonparametric ANOVA and post hoc Tukey HSD or Wilcoxon rank-sum tests, respectively. The number of paramarginal fractures was analyzed with exact Fisher tests (α=0.05). RESULTS Grandio demonstrated significantly more gap-free enamel margins than Charisma and Filtek Supreme XTE, before and after loading (p<0.01), whereas there was no difference between Charisma and Filtek Supreme XTE (p>0.05). No significant effect of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p<0.0001). More paramarginal enamel fractures were observed after loading in teeth restored with Grandio when compared to Charisma (p=0.008). CONCLUSIONS The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE The results from this study suggest that the marginal quality of restorations can be improved by the selection of a resin composite with modulus of elasticity close to that of dentine, although an increase in paramarginal enamel fractures can result as a consequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aging societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the bone hierarchical organization. A good understanding has been reached for elastic properties on several length scales, but up to now there is a lack of reliable postyield data on the lower length scales. In order to be able to describe the behavior of bone at the microscale, an anisotropic elastic-viscoplastic damage model was developed using an eccentric generalized Hill criterion and nonlinear isotropic hardening. The model was implemented as a user subroutine in Abaqus and verified using single element tests. A FE simulation of microindentation in lamellar bone was finally performed show-ing that the new constitutive model can capture the main characteristics of the indentation response of bone. As the generalized Hill criterion is limited to elliptical and cylindrical yield surfaces and the correct shape for bone is not known, a new yield surface was developed that takes any convex quadratic shape. The main advantage is that in the case of material identification the shape of the yield surface does not have to be anticipated but a minimization results in the optimal shape among all convex quadrics. The generality of the formulation was demonstrated by showing its degeneration to classical yield surfaces. Also, existing yield criteria for bone at multiple length scales were converted to the quadric formulation. Then, a computational study to determine the influence of yield surface shape and damage on the in-dentation response of bone using spherical and conical tips was performed. The constitutive model was adapted to the quadric criterion and yield surface shape and critical damage were varied. They were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic to total work ratio were found to be very well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not a significant fac-tor, while for spherical tips damage was insignificant. All inverse methods based on microindentation suffer from a lack of uniqueness of the found material properties in the case of nonlinear material behavior. Therefore, monotonic and cyclic micropillar com-pression tests in a scanning electron microscope allowing a straightforward interpretation comple-mented by microindentation and macroscopic uniaxial compression tests were performed on dry ovine bone to identify modulus, yield stress, plastic deformation, damage accumulation and failure mecha-nisms. While the elastic properties were highly consistent, the postyield deformation and failure mech-anisms differed between the two length scales. A majority of the micropillars showed a ductile behavior with strain hardening until failure by localization in a slip plane, while the macroscopic samples failed in a quasi-brittle fashion with microcracks coalescing into macroscopic failure surfaces. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behavior of bone at the microscale to a quasi-brittle response driven by the growth of preexisting cracks along interfaces or in the vicinity of pores at the macroscale. Subsequently, a study was undertaken to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topography measured by AFM. Statistical shape modeling of the residual imprint allowed to define a mean shape and describe the variability with 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was highly consistent and free of any pile up. A few of the topological parameters, in particular depth, showed significant correlations to variations in mechanical properties, but the cor-relations were not very strong or consistent. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small de-viations from the ideal case. As the uniaxial properties measured by micropillar compression are in conflict with the current literature on bone indentation, another dissipative mechanism has to be present. The elastic-viscoplastic damage model was therefore extended to viscoelasticity. The viscoelastic properties were identified from macroscopic experiments, while the quasistatic postelastic properties were extracted from micropillar data. It was found that viscoelasticity governed by macroscale properties has very little influence on the indentation curve and results in a clear underestimation of the creep deformation. Adding viscoplasticity leads to increased creep, but hardness is still highly overestimated. It was possible to obtain a reasonable fit with experimental indentation curves for both Berkovich and spherical indenta-tion when abandoning the assumption of shear strength being governed by an isotropy condition. These results remain to be verified by independent tests probing the micromechanical strength prop-erties in tension and shear. In conclusion, in this thesis several tools were developed to describe the complex behavior of bone on the microscale and experiments were performed to identify its material properties. Micropillar com-pression highlighted a size effect in bone due to the presence of preexisting cracks and pores or inter-faces like cement lines. It was possible to get a reasonable fit between experimental indentation curves using different tips and simulations using the constitutive model and uniaxial properties measured by micropillar compression. Additional experimental work is necessary to identify the exact nature of the size effect and the mechanical role of interfaces in bone. Deciphering the micromechanical behavior of lamellar bone and its evolution with age, disease and treatment and its failure mechanisms on several length scales will help preventing fractures in the elderly in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To analyze the precision of fit of implant-supported screw-retained computer-aided-designed and computer-aided-manufactured (CAD/CAM) zirconium dioxide (ZrO) frameworks. MATERIALS AND METHODS Computer-aided-designed and computer-aided-manufactured ZrO frameworks (NobelProcera) for a screw-retained 10-unit implant-supported reconstruction on six implants (FDI positions 15, 13, 11, 21, 23, 25) were fabricated using a laser (ZrO-L, N = 6) and a mechanical scanner (ZrO-M, N = 5) for digitizing the implant platform and the cuspid-supporting framework resin pattern. Laser-scanned CAD/CAM titanium (TIT-L, N = 6) and cast CoCrW-alloy frameworks (Cast, N = 5) fabricated on the same model and designed similar to the ZrO frameworks were the control. The one-screw test (implant 25 screw-retained) was applied to assess the vertical microgap between implant and framework platform with a scanning electron microscope. The mean microgap was calculated from approximal and buccal values. Statistical comparison was performed with non-parametric tests. RESULTS No statistically significant pairwise difference was observed between the relative effects of vertical microgap between ZrO-L (median 14 μm; 95% CI 10-26 μm), ZrO-M (18 μm; 12-27 μm) and TIT-L (15 μm; 6-18 μm), whereas the values of Cast (236 μm; 181-301 μm) were significantly higher (P < 0.001) than the three CAD/CAM groups. A monotonous trend of increasing values from implant 23 to 15 was observed in all groups (ZrO-L, ZrO-M and Cast P < 0.001, TIT-L P = 0.044). CONCLUSIONS Optical and tactile scanners with CAD/CAM technology allow for the fabrication of highly accurate long-span screw-retained ZrO implant-reconstructions. Titanium frameworks showed the most consistent precision. Fit of the cast alloy frameworks was clinically inacceptable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports the chemical composition of particles present along Greenland’s North Greenland Eemian Ice Drilling (NEEM) ice core, back to 110,000 years before present. Insoluble and soluble particles larger than 0.45 μm were extracted from the ice core by ice sublimation, and their chemical composition was analyzed using scanning electron microscope and energy dispersive X-ray spectroscopy and micro-Raman spectroscopy. We show that the dominant insoluble components are silicates, whereas NaCl, Na₂SO₄, CaSO ₄, and CaCO₃ represent major soluble salts. For the first time, particles of CaMg(CO₃)₂ and Ca(NO₃)₂ 4H₂O are identified in a Greenland ice core. The chemical speciation of salts varies with past climatic conditions. Whereas the fraction of Na salts (NaCl + Na₂SO₄) exceeds that of Ca salts (CaSO₄+ CaCO₃) during the Holocene (0.6–11.7 kyr B.P.), the two fractions are similar during the Bølling-Allerød period (12.9–14.6 kyr B.P.). During cold climate such as over the Younger Dryas (12.0–12.6 kyr B.P.) and the Last Glacial Maximum (15.0–26.9 kyr B.P.), the fraction of Ca salts exceeds that of Na salts, showing that the most abundant ion generally controls the salt budget in each period. High-resolution analyses reveal changing particle compositions: those in Holocene ice show seasonal changes, and those in LGM ice show a difference between cloudy bands and clear layers, which again can be largely explained by the availability of ionic components in the atmospheric aerosol body of air masses reaching Greenland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE The aim of this study was to investigate the effect of different energy settings of Er:YAG laser irradiation on dentin surface morphology with respect to the number of opened dentinal tubules. BACKGROUND DATA An ideally prepared dentin surface with opened dentinal tubules is a prerequisite for adhesive fixation. No study, however, has yet compared the numbers of opened dentinal tubules with regard to statistical differences. METHODS Conventional preparations using a bur with or without additional acid etching acted as control groups. Dentin specimens were prepared from human third molars and randomly divided into eight groups according to the energy settings of the laser (1, 1.5, 4, 6, 7.5, and 8 W) and two controls (bur and bur plus acid etching). After surface preparation, dentin surfaces were analyzed with a scanning electron microscope, and the number of opened dentinal tubules in a defined area was counted. RESULTS The control groups showed smooth surfaces with (bur plus acid etching) and without opened dentinal tubules (bur), whereas all laser-irradiated surfaces showed rough surfaces. Using the energy setting of 4 W resulted in significantly more opened dentinal tubules than the conventional preparation technique using the bur with additional acid etching. In contrast, the energy setting of 8 W showed significantly fewer opened dentinal tubules, and also exhibited signs of thermal damage. CONCLUSIONS The Er:YAG laser with an energy setting of 4 W generates a dentin surface with opened dentinal tubules, a prerequisite for adhesive fixation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To compare the precision of fit of long-span vs. short-span implant-supported screw-retained fixed dental prostheses (FDPs) made from computer-aided-design/computer-aided-manufactured (CAD/CAM) titanium and veneered with ceramic. The null hypothesis was that there is no difference in the vertical microgap between long-span and short-span FDPs. MATERIALS AND METHODS CAD/CAM titanium frameworks for an implant-supported maxillary FDP on implants with a flat platform were fabricated on one single master cast. Group A consisted of six 10-unit FDPs connected to six implants (FDI positions 15, 13, 11, 21, 23, 25) and group B of six 5-unit FDPs (three implants, FDI positions 21, 23, 25). The CAD/CAM system from Biodenta Swiss AG (Berneck, Switzerland) was used for digitizing (laser scanner) the master cast and anatomical CAD of each framework separately. The frameworks were milled (CAM) from a titanium grade V monobloc and veneered with porcelain. Median vertical distance between implant and FDP platforms from the non-tightened implants (one-screw test on implant 25) was calculated from mesial, buccal, and distal scanning electron microscope measurements. RESULTS All measurements showed values <40 μm. Total median vertical microgaps were 23 μm (range 2-38 μm) for group A and 7 μm (4-24 μm) for group B. The difference between the groups was statistically significant at implant 21 (P = 0.002; 97.5% CI -27.3 to -4.9) and insignificant at implant 23 (P = 0.093; -3.9 to 1.0). CONCLUSIONS CAD/CAM fabrication including laboratory scanning and porcelain firing was highly precise and reproducible for all long- and short-span FDPs. While all FDPs showed clinically acceptable values, the short-span FDPs were statistically more precise at the 5-unit span distance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phenomenon of premature chromosome condensation, resulting from fusion between mitotic and interphase cells, includes dissolution of the interphase nuclear framework, thus allowing a direct visualization of interphase chromosomes. Light microscope morphology of prematurely condensed chromosomes (PCC) from synchronized HeLa cells supports the model of an interphase "chromosome condensation cycle". PCC are increasingly attenuated as cells progress through G(,1). A maximum degree of decondensation is observed at active sites of DNA replication during S phase, and a condensed morphology is rapidly resumed following completion of replication of a chromosome segment.^ To permit ultrastructural and biochemical studies of PCC, a procedure was developed to induce premature chromosome condensation at high frequency. This was achieved by polyethylene glycol (PEG)-mediated fusion of a dense monolayer of mitotic and interphase cells induced by centrifugation onto lectin-coated culture dishes. Using this method, PCC induction frequencies of 60-90% are routinely obtained.^ Scanning electron microscope analysis of PCC spreads revealed that the extension of PCC during progression through G(,1) is accompanied by a transition of the basic 30 nm chromatin fiber from tightly packed looping fibers to extended longitudinal fibers. Sites of active DNA replication is S-PCC were indicated to be organized a single longitudinal fibers. Following replication of a chromosome segment, a rapid reorganization from the extended longitudinal fiber to packed looping fibers occurs. The postreplication maturation process appears to include the assembly of a chromosome core consisting of multiple longitudinal fibers.^ The role of histone H1 phosphorylation in PCC formation was investigated by acidurea polyacrylamide gel electrophoresis of total histone extracted from metaphase chromosomes and PCC following high frequency fusion. This investigation failed to demonstrate an extensive phosphorylation of H1 associated with PCC formation. However, significant dephosphorylation of superphosphorylated metaphase chromosome H1 was observed, indicating that interphase H1-phosphatase activity is dominant over metaphase H1 kinase activity. These observations provide evidence against models suggesting a role for H1 superphosphorylation in triggering mitotic condensation of chromosomes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A diagenetic study was carried out on the cored Miocene section in CRP-1 by thin-section, X-ray diffraction, scanning electron microscope, electron microprobe and stable isotopic analysis. Carbonate (calcite, siderite) microconcretions occur locally within intergranular pores and open fractures, and some sands are cemented by microcrystalline calcite. Calcite cement at 115.12 mbsf (metres below sea floor) and possibly microconcretionary calcite at 44.62 mbsf record infiltration of meteoric waters into the section, consistent with sequence stratigraphic evidence for multiple glacial advances over the CRP-1 drillsite. Diagenetic carbonates incorporated carbon derived from both organic matter and marine carbonate. Carbon isotope data are consistent with microconcretion formation at shallow depths. Sandstones are poorly compacted and, despite containing a large component of chemically unstable grains, are virtually unaltered. Preservation of the chemically unstable grain component reflects the cold climate depositional setting and shallow maximum burial depths.