931 resultados para User-centric API Framework
Resumo:
There is little research on off-road motorcycle and all-terrain vehicle riders though injury levels are high. This thesis identified formal responsibility for monitoring injuries, targeting young male and recreational riders, promotion of family members as models, and controlled and accessible riding locations as ways to increase safety. These recommendations were based on analysis of Queensland hospitalisation records, rider personal reports and survey responses.
Resumo:
As the systematic investigation of Twitter as a communications platform continues, the question of developing reliable comparative metrics for the evaluation of public, communicative phenomena on Twitter becomes paramount. What is necessary here is the establishment of an accepted standard for the quantitative description of user activities on Twitter. This needs to be flexible enough in order to be applied to a wide range of communicative situations, such as the evaluation of individual users’ and groups of users’ Twitter communication strategies, the examination of communicative patterns within hashtags and other identifiable ad hoc publics on Twitter (Bruns & Burgess, 2011), and even the analysis of very large datasets of everyday interactions on the platform. By providing a framework for quantitative analysis on Twitter communication, researchers in different areas (e.g., communication studies, sociology, information systems) are enabled to adapt methodological approaches and to conduct analyses on their own. Besides general findings about communication structure on Twitter, large amounts of data might be used to better understand issues or events retrospectively, detect issues or events in an early stage, or even to predict certain real-world developments (e.g., election results; cf. Tumasjan, Sprenger, Sandner, & Welpe, 2010, for an early attempt to do so).
Resumo:
With the widespread of social media websites in the internet, and the huge number of users participating and generating infinite number of contents in these websites, the need for personalisation increases dramatically to become a necessity. One of the major issues in personalisation is building users’ profiles, which depend on many elements; such as the used data, the application domain they aim to serve, the representation method and the construction methodology. Recently, this area of research has been a focus for many researchers, and hence, the proposed methods are increasing very quickly. This survey aims to discuss the available user modelling techniques for social media websites, and to highlight the weakness and strength of these methods and to provide a vision for future work in user modelling in social media websites.
Resumo:
Purpose Most barriers and enablers of sustainable projects are related to procurement. This study proposes a framework for evaluating green procurement practices throughout the lifecycle of road construction projects and demonstrates its application through an Australian case study. Design/methodology/approach The study is based on linking the phases of road construction with incentive mechanisms for proactively motivating behavioural change. A holistic view on utilised and potential incentives is attempted with a literature review and a state-of-practice review. The latter is based on interviews and 90 policy and procurement documents across five Australian states. Findings An evaluation framework with seven procurement stages is suggested to describe current state green procurement incentives throughout the delivery lifecycle of road construction projects. The Australian case study was found to provide useful data to identify gaps and strong points of the different states regarding their level of integration of sustainability and greenhouse gas emissions GHG) reduction elements in their procurement practices. This understanding was used to draw recommendations on future advancement of green procurement. Originality/value: Government entities across the globe can impact considerably the achievement of sustainability and GHG targets, by using their procurement practices and requirements to create incentives for contractors and suppliers to engage in more GHG conscious practices. The present study provides a systematic account of how green procurement practices can be underpinned using the Australian road construction industry as a case study, and distinguish between strong and weak links in the green procurement chain to draw recommendations for future initiatives.
Resumo:
Basing signature schemes on strong lattice problems has been a long standing open issue. Today, two families of lattice-based signature schemes are known: the ones based on the hash-and-sign construction of Gentry et al.; and Lyubashevsky’s schemes, which are based on the Fiat-Shamir framework. In this paper we show for the first time how to adapt the schemes of Lyubashevsky to the ring signature setting. In particular we transform the scheme of ASIACRYPT 2009 into a ring signature scheme that provides strong properties of security under the random oracle model. Anonymity is ensured in the sense that signatures of different users are within negligible statistical distance even under full key exposure. In fact, the scheme satisfies a notion which is stronger than the classical full key exposure setting as even if the keypair of the signing user is adversarially chosen, the statistical distance between signatures of different users remains negligible. Considering unforgeability, the best lattice-based ring signature schemes provide either unforgeability against arbitrary chosen subring attacks or insider corruption in log-sized rings. In this paper we present two variants of our scheme. In the basic one, unforgeability is ensured in those two settings. Increasing signature and key sizes by a factor k (typically 80 − 100), we provide a variant in which unforgeability is ensured against insider corruption attacks for arbitrary rings. The technique used is pretty general and can be adapted to other existing schemes.
Resumo:
Technological advances have led to an influx of affordable hardware that supports sensing, computation and communication. This hardware is increasingly deployed in public and private spaces, tracking and aggregating a wealth of real-time environmental data. Although these technologies are the focus of several research areas, there is a lack of research dealing with the problem of making these capabilities accessible to everyday users. This thesis represents a first step towards developing systems that will allow users to leverage the available infrastructure and create custom tailored solutions. It explores how this notion can be utilized in the context of energy monitoring to improve conventional approaches. The project adopted a user-centered design process to inform the development of a flexible system for real-time data stream composition and visualization. This system features an extensible architecture and defines a unified API for heterogeneous data streams. Rather than displaying the data in a predetermined fashion, it makes this information available as building blocks that can be combined and shared. It is based on the insight that individual users have diverse information needs and presentation preferences. Therefore, it allows users to compose rich information displays, incorporating personally relevant data from an extensive information ecosystem. The prototype was evaluated in an exploratory study to observe its natural use in a real-world setting, gathering empirical usage statistics and conducting semi-structured interviews. The results show that a high degree of customization does not warrant sustained usage. Other factors were identified, yielding recommendations for increasing the impact on energy consumption.
Resumo:
The rapid development of the World Wide Web has created massive information leading to the information overload problem. Under this circumstance, personalization techniques have been brought out to help users in finding content which meet their personalized interests or needs out of massively increasing information. User profiling techniques have performed the core role in this research. Traditionally, most user profiling techniques create user representations in a static way. However, changes of user interests may occur with time in real world applications. In this research we develop algorithms for mining user interests by integrating time decay mechanisms into topic-based user interest profiling. Time forgetting functions will be integrated into the calculation of topic interest measurements on in-depth level. The experimental study shows that, considering temporal effects of user interests by integrating time forgetting mechanisms shows better performance of recommendation.
Resumo:
Most recommender systems attempt to use collaborative filtering, content-based filtering or hybrid approach to recommend items to new users. Collaborative filtering recommends items to new users based on their similar neighbours, and content-based filtering approach tries to recommend items that are similar to new users' profiles. The fundamental issues include how to profile new users, and how to deal with the over-specialization in content-based recommender systems. Indeed, the terms used to describe items can be formed as a concept hierarchy. Therefore, we aim to describe user profiles or information needs by using concepts vectors. This paper presents a new method to acquire user information needs, which allows new users to describe their preferences on a concept hierarchy rather than rating items. It also develops a new ranking function to recommend items to new users based on their information needs. The proposed approach is evaluated on Amazon book datasets. The experimental results demonstrate that the proposed approach can largely improve the effectiveness of recommender systems.
Resumo:
Incorporating a learner’s level of cognitive processing into Learning Analytics presents opportunities for obtaining rich data on the learning process. We propose a framework called COPA that provides a basis for mapping levels of cognitive operation into a learning analytics system. We utilise Bloom’s taxonomy, a theoretically respected conceptualisation of cognitive processing, and apply it in a flexible structure that can be implemented incrementally and with varying degree of complexity within an educational organisation. We outline how the framework is applied, and its key benefits and limitations. Finally, we apply COPA to a University undergraduate unit, and demonstrate its utility in identifying key missing elements in the structure of the course.
Resumo:
Objective Despite ‘hospital resilience’ gaining prominence in recent years, it remains poorly defined. This article aims to define hospital resilience, build a preliminary conceptual framework and highlight possible approaches to measurement. Methods Searches were conducted of the commonly used health databases to identify relevant literature and reports. Search terms included ‘resilience and framework or model’ or ‘evaluation or assess or measure and hospital and disaster or emergency or mass casualty and resilience or capacity or preparedness or response or safety’. Articles were retrieved that focussed on disaster resilience frameworks and the evaluation of various hospital capacities. Result A total of 1480 potentially eligible publications were retrieved initially but the final analysis was conducted on 47 articles, which appeared to contribute to the study objectives. Four disaster resilience frameworks and 11 evaluation instruments of hospital disaster capacity were included. Discussion and conclusion Hospital resilience is a comprehensive concept derived from existing disaster resilience frameworks. It has four key domains: hospital safety; disaster preparedness and resources; continuity of essential medical services; recovery and adaptation. These domains were categorised according to four criteria, namely, robustness, redundancy, resourcefulness and rapidity. A conceptual understanding of hospital resilience is essential for an intellectual basis for an integrated approach to system development. This article (1) defines hospital resilience; (2) constructs conceptual framework (including key domains); (3) proposes comprehensive measures for possible inclusion in an evaluation instrument, and; (4) develops a matrix of critical issues to enhance hospital resilience to cope with future disasters.
Resumo:
In this paper, an interactive planning and scheduling framework are proposed for optimising operations from pits to crushers in ore mining industry. Series of theoretical and practical operations research techniques are investigated to improve the overall efficiency of mining systems due to the facts that mining managers need to tackle optimisation problems within different horizons and with different levels of detail. Under this framework, mine design planning,mine production sequencing and mine transportation scheduling models are integrated and interacted within a whole optimisation system. The proposed integrated framework could be used by mining industry for reducing equipment costs, improving the production efficiency and maximising the net present value.
Resumo:
In recent years, the Web 2.0 has provided considerable facilities for people to create, share and exchange information and ideas. Upon this, the user generated content, such as reviews, has exploded. Such data provide a rich source to exploit in order to identify the information associated with specific reviewed items. Opinion mining has been widely used to identify the significant features of items (e.g., cameras) based upon user reviews. Feature extraction is the most critical step to identify useful information from texts. Most existing approaches only find individual features about a product without revealing the structural relationships between the features which usually exist. In this paper, we propose an approach to extract features and feature relationships, represented as a tree structure called feature taxonomy, based on frequent patterns and associations between patterns derived from user reviews. The generated feature taxonomy profiles the product at multiple levels and provides more detailed information about the product. Our experiment results based on some popularly used review datasets show that our proposed approach is able to capture the product features and relations effectively.
Resumo:
Currently, the GNSS computing modes are of two classes: network-based data processing and user receiver-based processing. A GNSS reference receiver station essentially contributes raw measurement data in either the RINEX file format or as real-time data streams in the RTCM format. Very little computation is carried out by the reference station. The existing network-based processing modes, regardless of whether they are executed in real-time or post-processed modes, are centralised or sequential. This paper describes a distributed GNSS computing framework that incorporates three GNSS modes: reference station-based, user receiver-based and network-based data processing. Raw data streams from each GNSS reference receiver station are processed in a distributed manner, i.e., either at the station itself or at a hosting data server/processor, to generate station-based solutions, or reference receiver-specific parameters. These may include precise receiver clock, zenith tropospheric delay, differential code biases, ambiguity parameters, ionospheric delays, as well as line-of-sight information such as azimuth and elevation angles. Covariance information for estimated parameters may also be optionally provided. In such a mode the nearby precise point positioning (PPP) or real-time kinematic (RTK) users can directly use the corrections from all or some of the stations for real-time precise positioning via a data server. At the user receiver, PPP and RTK techniques are unified under the same observation models, and the distinction is how the user receiver software deals with corrections from the reference station solutions and the ambiguity estimation in the observation equations. Numerical tests demonstrate good convergence behaviour for differential code bias and ambiguity estimates derived individually with single reference stations. With station-based solutions from three reference stations within distances of 22–103 km the user receiver positioning results, with various schemes, show an accuracy improvement of the proposed station-augmented PPP and ambiguity-fixed PPP solutions with respect to the standard float PPP solutions without station augmentation and ambiguity resolutions. Overall, the proposed reference station-based GNSS computing mode can support PPP and RTK positioning services as a simpler alternative to the existing network-based RTK or regionally augmented PPP systems.