931 resultados para Urban Simulation Model
Resumo:
Background: Among other causes the long-term result of hip prostheses in dogs is determined by aseptic loosening. A prevention of prosthesis complications can be achieved by an optimization of the tribological system which finally results in improved implant duration. In this context a computerized model for the calculation of hip joint loadings during different motions would be of benefit. In a first step in the development of such an inverse dynamic multi-body simulation (MBS-) model we here present the setup of a canine hind limb model applicable for the calculation of ground reaction forces. Methods: The anatomical geometries of the MBS-model have been established using computer tomography- (CT-) and magnetic resonance imaging- (MRI-) data. The CT-data were collected from the pelvis, femora, tibiae and pads of a mixed-breed adult dog. Geometric information about 22 muscles of the pelvic extremity of 4 mixed-breed adult dogs was determined using MRI. Kinematic and kinetic data obtained by motion analysis of a clinically healthy dog during a gait cycle (1 m/s) on an instrumented treadmill were used to drive the model in the multi-body simulation. Results and Discussion: As a result the vertical ground reaction forces (z-direction) calculated by the MBS-system show a maximum deviation of 1.75%BW for the left and 4.65%BW for the right hind limb from the treadmill measurements. The calculated peak ground reaction forces in z- and y-direction were found to be comparable to the treadmill measurements, whereas the curve characteristics of the forces in y-direction were not in complete alignment. Conclusion: In conclusion, it could be demonstrated that the developed MBS-model is suitable for simulating ground reaction forces of dogs during walking. In forthcoming investigations the model will be developed further for the calculation of forces and moments acting on the hip joint during different movements, which can be of help in context with the in silico development and testing of hip prostheses.
Resumo:
The catastrophic event of red tide has happened in the Strait of Hormuz, the Persian Gulf and Gulf of Oman from late summer 2008 to spring 2009. With its devastating effects, the phenomenon shocked all the countries located in the margin of the Persian Gulf and the Gulf of Oman and caused considerable losses to fishery industries, tourism, and tourist and trade economy of the region. In the maritime cruise carried out by the Persian Gulf and Gulf of Oman Ecological Research Institute, field data, including temperature, salinity, chlorophyll-a, dissolved oxygen and algal density were obtained for this research. Satellite information was received from MODIS and MERIS and SeaWiFS sensors. Temperature and surface chlorophyll images were obtained and compared with the field data and data of PROBE model. The results obtained from the present research indicated that with the occurrence of harmful algal blooms (HAB), the Chlorophyll-a and the dissolved oxygen contents increased in the surface water. Maximum algal density was seen in the northern coasts of the Strait of Hormuz. Less concentration of algal density was detected in deep and surface offshore water. Our results show that the occurred algal bloom was the result of seawater temperature drop, water circulation and the adverse environmental pollutions caused by industrial and urban sewages entering the coastal waters in this region of the Persian Gulf ,This red tide phenomenon was started in the Strait of Hormuz and eventually covered about 140,000 km2 of the Persian Gulf and total area of Strait of Hormuz and it survived for 10 months which is a record amongst the occurred algal blooms across the world. Temperature and chlorophyll satellite images were proportionate to the measured values obtained by the field method. This indicates that satellite measurements have acceptable precisions and they can be used in sea monitoring and modeling.
Resumo:
Back-pressure on a diesel engine equipped with an aftertreatment system is a function of the pressure drop across the individual components of the aftertreatment system, typically, a diesel oxidation catalyst (DOC), catalyzed particulate filter (CPF) and selective catalytic reduction (SCR) catalyst. Pressure drop across the CPF is a function of the mass flow rate and the temperature of the exhaust flowing through it as well as the mass of particulate matter (PM) retained in the substrate wall and the cake layer that forms on the substrate wall. Therefore, in order to control the back-pressure on the engine at low levels and to minimize the fuel consumption, it is important to control the PM mass retained in the CPF. Chemical reactions involving the oxidation of PM under passive oxidation and active regeneration conditions can be utilized with computer numerical models in the engine control unit (ECU) to control the pressure drop across the CPF. Hence, understanding and predicting the filtration and oxidation of PM in the CPF and the effect of these processes on the pressure drop across the CPF are necessary for developing control strategies for the aftertreatment system to reduce back-pressure on the engine and in turn fuel consumption particularly from active regeneration. Numerical modeling of CPF's has been proven to reduce development time and the cost of aftertreatment systems used in production as well as to facilitate understanding of the internal processes occurring during different operating conditions that the particulate filter is subjected to. A numerical model of the CPF was developed in this research work which was calibrated to data from passive oxidation and active regeneration experiments in order to determine the kinetic parameters for oxidation of PM and nitrogen oxides along with the model filtration parameters. The research results include the comparison between the model and the experimental data for pressure drop, PM mass retained, filtration efficiencies, CPF outlet gas temperatures and species (NO2) concentrations out of the CPF. Comparisons of PM oxidation reaction rates obtained from the model calibration to the data from the experiments for ULSD, 10 and 20% biodiesel-blended fuels are presented.
Resumo:
The need for efficient, sustainable, and planned utilization of resources is ever more critical. In the U.S. alone, buildings consume 34.8 Quadrillion (1015) BTU of energy annually at a cost of $1.4 Trillion. Of this energy 58% is utilized for heating and air conditioning. Several building energy analysis tools have been developed to assess energy demands and lifecycle energy costs in buildings. Such analyses are also essential for an efficient HVAC design that overcomes the pitfalls of an under/over-designed system. DOE-2 is among the most widely known full building energy analysis models. It also constitutes the simulation engine of other prominent software such as eQUEST, EnergyPro, PowerDOE. Therefore, it is essential that DOE-2 energy simulations be characterized by high accuracy. Infiltration is an uncontrolled process through which outside air leaks into a building. Studies have estimated infiltration to account for up to 50% of a building’s energy demand. This, considered alongside the annual cost of buildings energy consumption, reveals the costs of air infiltration. It also stresses the need that prominent building energy simulation engines accurately account for its impact. In this research the relative accuracy of current air infiltration calculation methods is evaluated against an intricate Multiphysics Hygrothermal CFD building envelope analysis. The full-scale CFD analysis is based on a meticulous representation of cracking in building envelopes and on real-life conditions. The research found that even the most advanced current infiltration methods, including in DOE-2, are at up to 96.13% relative error versus CFD analysis. An Enhanced Model for Combined Heat and Air Infiltration Simulation was developed. The model resulted in 91.6% improvement in relative accuracy over current models. It reduces error versus CFD analysis to less than 4.5% while requiring less than 1% of the time required for such a complex hygrothermal analysis. The algorithm used in our model was demonstrated to be easy to integrate into DOE-2 and other engines as a standalone method for evaluating infiltration heat loads. This will vastly increase the accuracy of such simulation engines while maintaining their speed and ease of use characteristics that make them very widely used in building design.
Resumo:
I Medicane sono rari cicloni che si sviluppano sul Mar Mediterraneo e presentano caratteristiche dei cicloni tropicali, come la forma a spirale delle bande di nubi, un occhio privo di venti e nubi, venti intensi nella banda che circonda l’occhio e la presenza di un nucleo caldo. Nel presente lavoro, è stata compiuta un’analisi del Medicane Numa, verificatosi nel novembre del 2017, utilizzando gli output della simulazione del modello RAMS-ISAC. L’obiettivo di questa tesi è l’identificazione e la descrizione delle caratteristiche tropicali di Numa, focalizzandosi sulla descrizione dei diversi stadi di sviluppo del ciclone. Il sistema di bassa pressione è stato identificato utilizzando la pressione sul livello del mare, mentre l’anomalia termica e il vento orizzontale hanno permesso una descrizione della struttura del Medicane e del suo nucleo caldo. Un’illustrazione della struttura a spirale delle bande di nubi e dell’occhio è stata ottenuta con il grafico dei rapporti di mescolanza delle idrometeore di nubi e pioggia. Questi parametri hanno consentito di ricavare il diametro dell’occhio, pari a 75 km, mentre il diametro del Medicane è risultato 230 km. Numa ha registrato una velocità massima del vento in superficie di 20 m/s nella banda adiacente all’occhio del ciclone. Il diagramma di Hart dello spazio delle fasi del ciclone ha confermato la natura simil-tropicale di Numa e ne ha descritto l’evoluzione, identificando la transizione da sistema a caratteri tropicali a sistema ibrido. La traiettoria nello spazio delle fasi ha consentito l’identificazione delle sottofasi dell’evoluzione di Numa, confermate dai grafici dell’evoluzione temporale dei parametri menzionati in precedenza. L’analisi ha mostrato il ruolo cruciale della presenza di una struttura organizzata nel determinare l’intensità e la durata delle caratteristiche tropicali. Tutti i parametri hanno evidenziato la simmetria della struttura durante la persistente fase matura di Numa.
Resumo:
L'avanzamento dell'e-commerce e l'aumento della densità abitativa nel centro città sono elementi che incentivano l'incremento della richiesta merci all'interno dei centri urbani. L'attenzione all'impatto ambientale derivante da queste attività operative è un punto focale oggetto di sempre maggiore interesse. Attraverso il seguente studio, l'obiettivo è definire attuali e potenziali soluzioni nell'ambito della logistica urbana, con particolare interesse alle consegne dell'ultimo miglio. Una soluzione proposta riguarda la possibilità di sfruttare la capacità disponibile nei flussi generati dalla folla per movimentare merce, pratica nota sotto il nome di Crowd-shipping. L'idea consiste nella saturazione di mezzi già presenti nella rete urbana al fine di ridurre il numero di veicoli commerciali e minimizzare le esternalità negative annesse. A supporto di questa iniziativa, nell'analisi verranno considerati veicoli autonomi elettrici a guida autonoma. La tesi è incentrata sulla definizione di un modello di ottimizzazione matematica, che mira a designare un network logistico-distributivo efficiente per le consegne dell'ultimo miglio e a minimizzare le distanze degli attori coinvolti. Il problema proposto rappresenta una variante del Vehicle Routing Problem con time windows e multi depots. Il problema è NP-hard, quindi computazionalmente complesso per cui sarà necessario, in fase di analisi, definire un approccio euristico che permetterà di ottenere una soluzione sub-ottima in un tempo di calcolo ragionevole per istanze maggiori. L'analisi è stata sviluppata nell'ambiente di sviluppo Eclipse, attraverso il risolutore Cplex, in linguaggio Java. Per poterne comprendere la validità, è prevista un'ultima fase in cui gli output del modello ottimo e dell'euristica vengono confrontati tra loro su parametri caratteristici. Bisogna tuttavia considerare che l' utilizzo di sistemi cyber-fisici a supporto della logistica non può prescindere da un costante sguardo verso il progresso.
Resumo:
The work presented in this thesis aims to contribute to innovation in the Urban Air Mobility and Delivery sector and represents a solid starting point for air logistics and its future scenarios. The dissertation focuses on modeling, simulation, and control of a formation of multirotor aircraft for cooperative load transportation, with particular attention to environmental sustainability. First, a simulation and test environment is developed to assess technologies for suspended load stabilization. Starting from the mathematical model of two identical multirotors, formation-flight-keeping and collision-avoidance algorithms are analyzed. This approach guarantees both the safety of the vehicles within the formation and that of the payload, which may be made of people in the very near future. Afterwards, a mathematical model for the suspended load is implemented, as well as an active controller for its stabilization. The key focus of this part is represented by both analysis and control of payload oscillatory motion, by thoroughly investigating load kinetic energy decay. At this point, several test cases were introduced, in order to understand which strategy is the most effective and safe in terms of future applications in the field of air logistics.
Resumo:
Since the majority of the population of the world lives in cities and that this number is expected to increase in the next years, one of the biggest challenges of the research is the determination of the risk deriving from high temperatures experienced in urban areas, together with improving responses to climate-related disasters, for example by introducing in the urban context vegetation or built infrastructures that can improve the air quality. In this work, we will investigate how different setups of the boundary and initial conditions set on an urban canyon generate different patterns of the dispersion of a pollutant. To do so we will exploit the low computational cost of Reynolds-Averaged Navier-Stokes (RANS) simulations to reproduce the dynamics of an infinite array of two-dimensional square urban canyons. A pollutant is released at the street level to mimic the presence of traffic. RANS simulations are run using the k-ɛ closure model and vertical profiles of significant variables of the urban canyon, namely the velocity, the turbulent kinetic energy, and the concentration, are represented. This is done using the open-source software OpenFOAM and modifying the standard solver simpleFoam to include the concentration equation and the temperature by introducing a buoyancy term in the governing equations. The results of the simulation are validated with experimental results and products of Large-Eddy Simulations (LES) from previous works showing that the simulation is able to reproduce all the quantities under examination with satisfactory accuracy. Moreover, this comparison shows that despite LES are known to be more accurate albeit more expensive, RANS simulations represent a reliable tool if a smaller computational cost is needed. Overall, this work exploits the low computational cost of RANS simulations to produce multiple scenarios useful to evaluate how the dispersion of a pollutant changes by a modification of key variables, such as the temperature.
Resumo:
In this work, the energy response functions of a CdTe detector were obtained by Monte Carlo (MC) simulation in the energy range from 5 to 160keV, using the PENELOPE code. In the response calculations the carrier transport features and the detector resolution were included. The computed energy response function was validated through comparison with experimental results obtained with (241)Am and (152)Eu sources. In order to investigate the influence of the correction by the detector response at diagnostic energy range, x-ray spectra were measured using a CdTe detector (model XR-100T, Amptek), and then corrected by the energy response of the detector using the stripping procedure. Results showed that the CdTe exhibits good energy response at low energies (below 40keV), showing only small distortions on the measured spectra. For energies below about 80keV, the contribution of the escape of Cd- and Te-K x-rays produce significant distortions on the measured x-ray spectra. For higher energies, the most important correction is the detector efficiency and the carrier trapping effects. The results showed that, after correction by the energy response, the measured spectra are in good agreement with those provided by a theoretical model of the literature. Finally, our results showed that the detailed knowledge of the response function and a proper correction procedure are fundamental for achieving more accurate spectra from which quality parameters (i.e., half-value layer and homogeneity coefficient) can be determined.
Resumo:
The quantification of the available energy in the environment is important because it determines photosynthesis, evapotranspiration and, therefore, the final yield of crops. Instruments for measuring the energy balance are costly and indirect estimation alternatives are desirable. This study assessed the Deardorff's model performance during a cycle of a sugarcane crop in Piracicaba, State of São Paulo, Brazil, in comparison to the aerodynamic method. This mechanistic model simulates the energy fluxes (sensible, latent heat and net radiation) at three levels (atmosphere, canopy and soil) using only air temperature, relative humidity and wind speed measured at a reference level above the canopy, crop leaf area index, and some pre-calibrated parameters (canopy albedo, soil emissivity, atmospheric transmissivity and hydrological characteristics of the soil). The analysis was made for different time scales, insolation conditions and seasons (spring, summer and autumn). Analyzing all data of 15 minute intervals, the model presented good performance for net radiation simulation in different insolations and seasons. The latent heat flux in the atmosphere and the sensible heat flux in the atmosphere did not present differences in comparison to data from the aerodynamic method during the autumn. The sensible heat flux in the soil was poorly simulated by the model due to the poor performance of the soil water balance method. The Deardorff's model improved in general the flux simulations in comparison to the aerodynamic method when more insolation was available in the environment.
Resumo:
PURPOSE: The ability to predict and understand which biomechanical properties of the cornea are responsible for the stability or progression of keratoconus may be an important clinical and surgical tool for the eye-care professional. We have developed a finite element model of the cornea, that tries to predicts keratoconus-like behavior and its evolution based on material properties of the corneal tissue. METHODS: Corneal material properties were modeled using bibliographic data and corneal topography was based on literature values from a schematic eye model. Commercial software was used to simulate mechanical and surface properties when the cornea was subject to different local parameters, such as elasticity. RESULTS: The simulation has shown that, depending on the corneal initial surface shape, changes in local material properties and also different intraocular pressures values induce a localized protuberance and increase in curvature when compared to the remaining portion of the cornea. CONCLUSIONS: This technique provides a quantitative and accurate approach to the problem of understanding the biomechanical nature of keratoconus. The implemented model has shown that changes in local material properties of the cornea and intraocular pressure are intrinsically related to keratoconus pathology and its shape/curvature.
Resumo:
We have the purpose of analyzing the effect of explicit diffusion processes in a predator-prey stochastic lattice model. More precisely we wish to investigate the possible effects due to diffusion upon the thresholds of coexistence of species, i. e., the possible changes in the transition between the active state and the absorbing state devoid of predators. To accomplish this task we have performed time dependent simulations and dynamic mean-field approximations. Our results indicate that the diffusive process can enhance the species coexistence.
Resumo:
Motivated by a recently proposed biologically inspired face recognition approach, we investigated the relation between human behavior and a computational model based on Fourier-Bessel (FB) spatial patterns. We measured human recognition performance of FB filtered face images using an 8-alternative forced-choice method. Test stimuli were generated by converting the images from the spatial to the FB domain, filtering the resulting coefficients with a band-pass filter, and finally taking the inverse FB transformation of the filtered coefficients. The performance of the computational models was tested using a simulation of the psychophysical experiment. In the FB model, face images were first filtered by simulated V1- type neurons and later analyzed globally for their content of FB components. In general, there was a higher human contrast sensitivity to radially than to angularly filtered images, but both functions peaked at the 11.3-16 frequency interval. The FB-based model presented similar behavior with regard to peak position and relative sensitivity, but had a wider frequency band width and a narrower response range. The response pattern of two alternative models, based on local FB analysis and on raw luminance, strongly diverged from the human behavior patterns. These results suggest that human performance can be constrained by the type of information conveyed by polar patterns, and consequently that humans might use FB-like spatial patterns in face processing.
Resumo:
Abstract This paper aims at assessing the performance of a program of thermal simulation (Arquitrop) in different households in the city of Sao Paulo, Brazil. The households were selected for the Wheezing Project which followed up children under 2 years old to monitor the occurrence of respiratory diseases. The results show that in all three study households there is a good approximation between the observed and the simulated indoor temperatures. It was also observed a fairly consistent and realistic behavior between the simulated indoor and the outdoor temperatures, describing the Arquitrop model as an efficient estimator and good representative of the thermal behavior of households in the city of Sao Paulo. The worst simulation is linked to the poorest type of construction. This may be explained by the bad quality of the construction, which the Architrop could not simulate adequately
Resumo:
Background: Population antimicrobial use may influence resistance emergence. Resistance is an ecological phenomenon due to potential transmissibility. We investigated spatial and temporal patterns of ciprofloxacin (CIP) population consumption related to E. coli resistance emergence and dissemination in a major Brazilian city. A total of 4,372 urinary tract infection E. coli cases, with 723 CIP resistant, were identified in 2002 from two outpatient centres. Cases were address geocoded in a digital map. Raw CIP consumption data was transformed into usage density in DDDs by CIP selling points influence zones determination. A stochastic model coupled with a Geographical Information System was applied for relating resistance and usage density and for detecting city areas of high/low resistance risk. Results: E. coli CIP resistant cluster emergence was detected and significantly related to usage density at a level of 5 to 9 CIP DDDs. There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. Conclusions: There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. The usage density of 5-9 CIP DDDs per 1,000 inhabitants within the same influence zone was the resistance triggering level. This level led to E. coli resistance clustering, proving that individual resistance emergence and dissemination was affected by antimicrobial population consumption.