888 resultados para Urban Heat Island Effect
Resumo:
It is generally assumed by educators that inservice training will make a significant difference in teacher knowledge of topics related to education. This investigation addressed that assumption by examining the effects of various factors, e.g., amount and timing of inservice training, upon teacher knowledge of educational law. Of special interest was teacher knowledge of the law as it pertained to ethnic and other characteristics of students in urban school settings. This study was deliberately designed to determine which factors should be later investigated in a more deterministic form, e.g., an experimental design.^ The investigation built upon that of Ogletree (1985), Osborne (1996) and others who focused on the importance of teacher development as a method to enhance professional abilities. The main question addressed in this study was, "How knowledgeable are teachers of school law, especially with regard to general school law, the Meta Consent Decree and Section 504 of the Rehabilitation Act of 1973."^ The study participants (N = 302) were from the Dade County School System, the fourth largest in the U.S. The survey design (approved by the System), specified participants from all levels and types of schools and geographic representations. A survey instrument was created, pilot tested, revised and approved for use by the district official representatives. After administration of the instrument, the resultant data was treated by several appropriate tests, e.g., multivariate analysis of variance (ANOVA).^ Several findings emerged from the analysis of the data: in general, teachers did not have sufficient knowledge of school law; factors, such as amount and level of education, and status and position were positively correlated with increased knowledge; factors such as years of experience, gender, race and ethnicity were not correlated with higher levels of knowledge. The most significant, however, was that when teachers had participated in several inservice training experiences, typically workshops, and, when combined with other factors noted above, their knowledge of school law was significantly higher. Specific recommendations for future studies were made. ^
Resumo:
The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood. ^ A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re = 90–600 and phase change material particle concentrations of ϵp ≤ 0.25, as well as extreme conditions of very low Reynolds numbers (Re < 50) and high phase change material particle concentration (ϵp = 50%–70%) slurry flow. By using the two newly-defined parameters, named effectiveness factor ϵeff and performance index PI, respectively, it is found that there exists an optimal relation between the channel design parameters L and D, particle volume fraction ϵp, Reynolds number Re, and the wall heat flux qw. The influence of the particle volume fraction ϵp, particle size dp, and the particle viscosity μ p, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices. ^ To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed. ^
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).
Resumo:
Hyperthermia is usually used at a sub-lethal level in cancer treatment to potentiate the effects of chemotherapy. The purpose of this study is to investigate the role of heating rate in achieving synergistic cell killing by chemotherapy and hyperthermia. For this purpose, in vitro cell culture experiments with a uterine cancer cell line (MES-SA) and its multidrug resistant (MDR) variant MES-SA/Dx5 were conducted. The cytotoxicity, mode of cell death, induction of thermal tolerance and P-gp mediated MDR following the two different modes of heating were studied. Doxorubicin (DOX) was used as the chemotherapy drug. Indocyanine green (ICG), which absorbs near infrared light at 808nm (ideal for tissue penetration), was chosen for achieving rapid rate hyperthermia. A slow rate hyperthermia was provided by a cell culture incubator. The results show that the potentiating effect of hyperthermia to chemotherapy can be maximized by increasing the rate of heating as evident by the results from the cytotoxicity assay. When delivered at the same thermal dose, a rapid increase in temperature from 37°C to 43°C caused more cell membrane damage than gradually heating the cells from 37°C to 43°C and thus allowed for more intracellular accumulation of the chemotherapeutic agents. Different modes of cell death are observed by the two hyperthermia delivery methods. The rapid rate laser-ICG hyperthermia @ 43°C caused cell necrosis whereas the slow rate incubator hyperthermia @ 43°C induced very mild apoptosis. At 43°C a positive correlation between thermal tolerance and the length of hyperthermia exposure is identified. This study shows that by increasing the rate of heating, less thermal dose is needed in order to overcome P-gp mediated MDR.
Resumo:
This case study examines the factors that shaped the identity and landscape of a small island-urban-village between the north and south forks of the Middle River and north of an urban area in Broward County, Florida. The purpose of the study is to understand how Wilton Manors was transformed from a “whites only” enclave to the contemporary upscale, diverse, and third gayest city in the U.S. by positing that a dichotomy for urban places exists between their exchange value as seen by Logan and Molotch and the use value produced through everyday activity according to Lefebvre. Qualitative methods were used to gather evidence for reaching conclusions about the relationship among the worldview of residents, the tension between exchange value and use value in the restructuration of the city, and the transformation of Wilton Manors at the end of the 1990s. Semi-structured, in-depth interviews were conducted with 21 contemporary participants. In addition, thirteen taped CDs of selected members of founding families, previously taped in the 1970s, were analyzed using a grounded theory approach. My findings indicate that Wilton Manors’ residents share a common worldview which incorporates social inclusion as a use value, and individual agency in the community. This shared worldview can be traced to selected city pioneers whose civic mindedness helped shape city identity and laid the foundation for future restructuration. Currently, residents’ quality of life reflected in the city’s use value is more significant than exchange value as a primary force in the decisions that are made about the city’s development. With innovative ideas, buildings emulating the new urban mixed-use design, and a reputation as the third gayest city in the United States, Wilton Manors reflects a worldview where residents protect use value as primary over market value in the decisions they make that shape their city but not without contestation.^
Resumo:
Black students, in general, are underserved academically (Darling-Hammond, 2000; Townsend, 2002) and overrepresented in special education (Donovan & Cross, 2002). Black students with disabilities are further overrepresented in more restrictive educational environments (Skiba, Poloni-Staudinger, Gallini, Simmons & Feggins-Azziz, 2006). Although the National Longitudinal Transition Study 2 (NLTS2) revealed that the academic performance of students with learning disabilities is positively related to the percentage of courses taken in the general education setting (Newman, 2006), the research specifically on placement of Black students with disabilities, particularly at the secondary level, as it relates to academic achievement is lacking. While previous studies have sought to determine which placement is better for students with disabilities, no study was found that specifically examined the impact of placement specific to Black students with specific learning disabilities (SLD) in urban settings (Fore, III, Hagan-Burke, Burke, Boon & Smith, 2008; Rea, McLaughlin & Walther-Thomas, 2002). This study examined educational placement, instructional best practices, and achievement gains of Black students with SLD in urban secondary settings using an ex post facto research design. Achievement, placement, and demographic data were collected and analyzed on approximately 314 Black eighth grade students with SLD. The Teacher Instructional Practices Survey was developed and used to collect and analyze data from the teachers of 78 of these students as it relates to instructional best practices. Results indicate no significant difference in reading but a significant difference in math gains of students served in inclusive settings as compared to resource settings with a small effect size. Also, no significant relationship was found between achievement gains and the reported use of instructional best practices. However, there was a relationship between educational placement and the use of instructional best practices. The results implied that there is a need for training with both general and special education teachers on instructional best practices for SWD and that there should be certain IEP team considerations when making placement decisions for this population of students with disabilities. It is recommended that future research in this area include classroom observations and factors other than test scores to measure growth in achievement.
Resumo:
The purpose of this study is to investigate the relationship between student reading achievement and family involvement in urban schools. In this action research project, family members will be invited to participate as reading mentors during class time. In this study, the mentors will have the chance to impact the students by reading aloud to them in small groups. It is hypothesized that this will increase the student's reading scores and motivate students to read for enjoyment.
Resumo:
Questions: How are the early survival and growth of seedlings of Everglades tree species planted in an experimental setting on artificial tree islands affected by hydrology and substrate type? What are the implications of these responses for broader tree island restoration efforts? Location: Loxahatchee Impoundment Landscape Assessment (LILA), Boynton Beach, Florida, USA. Methods: An experiment was designed to test hydrological and substrate effects on seedling growth and survivorship. Two islands – a peat and a limestone-core island representing two major types found in the Everglades – were constructed in four macrocosms. A mixture of eight tree species was planted on each island in March of 2006 and 2007. Survival and height growth of seedlings planted in 2006 were assessed periodically during the next two and a half years. Results: Survival and growth improved with increasing elevation on both tree island substrate types. Seedlings' survival and growth responses along a moisture gradient matched species distributions along natural hydrological gradients in the Everglades. The effect of substrate on seedling performance showed higher survival of most species on the limestone tree islands, and faster growth on their peat-based counterparts. Conclusions: The present results could have profound implications for restoration of forests on existing landforms and artificial creation of tree islands. Knowledge of species tolerance to flooding and responses to different edaphic conditions present in wetlands is important in selecting suitable species to plant on restored tree islands
Resumo:
Globally, mangrove ecosystems have substantially declined, largely a result of human impacts. Mangroves provide a number of ecosystem services such as shoreline stabilization and nursery habitat for fish species. As declines continue, many of these ecosystem services are lost or altered. The need for shoreline stabilization has become increasingly apparent when chronic erosion wear away coastlines once mangroves are removed. Limestone boulders called riprap have been employed to offset continued erosion associated with mangrove clearing. In urban coastal areas adjacent to Biscayne Bay, Florida, as much as 80 percent of mangroves have been lost. More recently, riprap has been used in conjunction with mangroves to restore wetlands throughout the Bay. This riprap-mangrove habitat provides structure for marine organisms to colonize. However, fish assemblages and benthic composition could vary between this hybridized habitat and natural mangrove systems. Comparisons of fish and benthic community structure were made, to determine if abundance, species richness, and overall diversity differed between the two habitat types. Visual census and benthic quadrat surveys were conducted in vi mangrove and mangrove-riprap sites within two regions of Biscayne Bay. Total fish abundance was greater in mangroves, but the effect of habitat type on species richness varied between regions. The community structure of fishes and benthic composition differed significantly between mangroves and riprap habitats. Because species composition is so distinct, it is likely that the two communities do no function in the same manner. In areas with cleared shorelines, it may be important to consider the function of added anthropogenic structure for ecological communities.
Resumo:
This research was undertaken to explore dimensions of the risk construct, identify factors related to risk-taking in education, and study risk propensity among employees at a community college. Risk-taking propensity (RTP) was measured by the 12-item BCDQ, which consisted of personal and professional risk-related situations balanced for the money, reputation, and satisfaction dimensions of the risk construct. Scoring ranged from 1.00 (most cautious) to 6.00 (most risky).^ Surveys including the BCDQ and seven demographic questions relating to age, gender, professional status, length of service, academic discipline, highest degree, and campus location were sent to faculty, administrators, and academic department heads. A total of 325 surveys were returned, resulting in a 66.7% response rate. Subjects were relatively homogeneous for age, length of service, and highest degree.^ Subjects were also homogeneous for risk-taking propensity: no substantive differences in RTP scores were noted within and among demographic groups, with the possible exception of academic discipline. The mean RTP score for all subjects was 3.77, for faculty was 3.76, for administrators was 3.83, and for department heads was 3.64.^ The relationship between propensity to take personal risks and propensity to take professional risks was tested by computing Pearson r correlation coefficients. The relationships for the total sample, faculty, and administrator groups were statistically significant, but of limited practical significance. Subjects were placed into risk categories by dividing the response scale into thirds. A 3 x 3 factorial ANOVA revealed no interaction effects between professional status and risk category with regard to RTP score. A discriminant analysis showed that a seven-factor model was not effective in predicting risk category.^ The homogeneity of the study sample and the effect of a risk-encouraging environment were discussed in the context of the community college. Since very little data on risk-taking in education is available, risk propensity data from this study could serve as a basis for comparison to future research. Results could be used by institutions to plan professional development activities, designed to increase risk-taking and encourage active acceptance of change. ^
Resumo:
This investigation reports the magnetic field effect on natural convection heat transfer in a curved-shape enclosure. The numerical investigation is carried out using the control volume-based-finite element method (CVFEM). The numerical investigations are performed for various values of Hartmann number and Rayleigh number. The obtained results are depicted in terms of streamlines and isotherms which show the significant effects of Hartmann number on the fluid flow and temperature distribution inside the enclosure. Also, it was found that the Nusselt number decreases with an increase in the Hartmann number.
Resumo:
Transpiration-driven nutrient accumulation has been identified as a potential mechanism governing the creation and maintenance of wetland vegetation patterning. This process may contribute to the formation of nutrient-rich tree islands within the expansive oligotrophic marshes of the Everglades (Florida, United States). This study presents hydrogeochemical data indicating that tree root water uptake is a primary driver of groundwater ion accumulation across one of these islands. Sap flow, soil moisture, water level, water chemistry, and rainfall were measured to identify the relationships between climate, transpiration, and groundwater uptake by phreatophytes and to examine the effect this uptake has on groundwater chemistry and mineral formation in three woody plant communities of differing elevations. During the dry season, trees relied more on groundwater for transpiration, which led to a depressed water table and the advective movement of groundwater and dissolved ions, including phosphorus, from the surrounding marsh towards the centre of the island. Ion exclusion during root water uptake led to elevated concentrations of all major dissolved ions in the tree island groundwater compared with the adjacent marsh. Groundwater was predominately supersaturated with respect to aragonite and calcite in the lower-elevation woody communities, indicating the potential for soil formation. Elevated groundwater phosphorous concentrations detected in the highest-elevation woody community were associated with the leaching of inorganic sediments (i.e. hydroxyapatite) in the vadose zone. Understanding the complex feedback mechanisms regulating plant/groundwater/surface water interactions, nutrient dynamics, and potential soil formation is necessary to manage and restore patterned wetlands such as the Everglades.
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).
Resumo:
This research was undertaken to explore dimensions of the risk construct, identify factors related to risk-taking in education, and study risk propensity among employees at a community college. Risk-taking propensity (RTP) was measured by the 12-item BCDQ, which consisted of personal and professional risk-related situations balanced for the money, reputation, and satisfaction dimensions of the risk construct. Scoring ranged from 1.00 (most cautious) to 6.00 (most risky). Surveys including the BCDQ and seven demographic questions relating to age, gender, professional status, length of service, academic discipline, highest degree, and campus location were sent to faculty, administrators, and academic department heads. A total of 325 surveys were returned, resulting in a 66.7% response rate. Subjects were relatively homogeneous for age, length of service, and highest degree. Subjects were also homogeneous for risk-taking propensity: no substantive differences in RTP scores were noted within and among demographic groups, with the possible exception of academic discipline. The mean RTP score for all subjects was 3.77, for faculty was 3.76, for administrators was 3.83, and for department heads was 3.64. The relationship between propensity to take personal risks and propensity to take professional risks was tested by computing Pearson r correlation coefficients. The relationships for the total sample, faculty, and administrator groups were statistically significant, but of limited practical significance. Subjects were placed into risk categories by dividing the response scale into thirds. A 3 X 3 factorial ANOVA revealed no interaction effects between professional status and risk category with regard to RTP score. A discriminant analysis showed that a seven-factor model was not effective in predicting risk category. The homogeneity of the study sample and the effect of a risk encouraging environment were discussed in the context of the community college. Since very little data on risk-taking in education is available, risk propensity data from this study could serve as a basis for comparison to future research. Results could be used by institutions to plan professional development activities, designed to increase risk-taking and encourage active acceptance of change.
Resumo:
A uniform chronology for foraminifera-based sea surface temperature records has been established in more than 120 sediment cores obtained from the equatorial and eastern Atlantic up to the Arctic Ocean. The chronostratigraphy of the last 30,000 years is mainly based on published d18O records and 14C ages from accelerator mass spectrometry, converted into calendar-year ages. The high-precision age control provides the database necessary for the uniform reconstruction of the climate interval of the Last Glacial Maximum within the GLAMAP-2000 project.