876 resultados para Underlying cause of deathunderlying cause of death


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The near-critical behaviour in complex fluids, comprising electrolyte solutions, polymer solutions and amphiphilic systems, reveals a marked departure from the 3-D Ising behaviour. This departure manifests itself either in terms of a crossover from Ising to mean-field (or classical) critical behaviour, when moving away from a given critical point (Tc), or by the persistence of only mean-field region in the surprisingly close vicinity of Tc. The ilo,non-Ising features of the osmotic compressibility (chi(T,p)) in solutions of electrolytes, that exhibit orle or many liquid-liquid transitions, will be presented. The underlying cause of the breakdown of the anticipated 3-D Ising behaviour in aqueous electrolyte solutions is traced to the structuring induced by the electrolytes. New evidence constituting, measurements of small-angle X-ray scattering (SAXS) and the excess molar volume, is advanced to support the thesis of the close relationship, between the structuring and the deviation from the 3-D Ising critical behaviour in aqueous electrolyte solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Convergence of the vast sequence space of proteins into a highly restricted fold/conformational space suggests a simple yet unique underlying mechanism of protein folding that has been the subject of much debate in the last several decades. One of the major challenges related to the understanding of protein folding or in silico protein structure prediction is the discrimination of non-native structures/decoys from the native structure. Applications of knowledge-based potentials to attain this goal have been extensively reported in the literature. Also, scoring functions based on accessible surface area and amino acid neighbourhood considerations were used in discriminating the decoys from native structures. In this article, we have explored the potential of protein structure network (PSN) parameters to validate the native proteins against a large number of decoy structures generated by diverse methods. We are guided by two principles: (a) the PSNs capture the local properties from a global perspective and (b) inclusion of non-covalent interactions, at all-atom level, including the side-chain atoms, in the network construction accommodates the sequence dependent features. Several network parameters such as the size of the largest cluster, community size, clustering coefficient are evaluated and scored on the basis of the rank of the native structures and the Z-scores. The network analysis of decoy structures highlights the importance of the global properties contributing to the uniqueness of native structures. The analysis also exhibits that the network parameters can be used as metrics to identify the native structures and filter out non-native structures/decoys in a large number of data-sets; thus also has a potential to be used in the protein `structure prediction' problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results of surface mechanical and particle tracking measurements of nanoparticles trapped at the air-water interface as a function of their areal density. We monitor both the surface pressure (II) and isothermal compression modulus (epsilon) as well as the dynamics of nanoparticle clusters, using fluorescence confocal microscopy while they are compressed to very high density near the two dimensional close packing density Phi similar to 0.82. We observe non-monotonic variation in both epsilon and the dynamic heterogeneity, characterized by the dynamical susceptibility chi(4) with Phi, in such high density monolayers. We provide insight into the underlying nature of such transitions in close packed high density nanoparticle monolayers in terms of the morphology and flexibility of these soft colloidal particles.. We discuss the significance our results in the context of related studies on two dimensional granular or colloidal systems. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroblastoma is the most common cancer in infants and fourth most common cancer in children. Despite recent advances in cancer treatments, the prognosis of stage-IV neuroblastoma patients continues to be dismal which warrant new pharmacotherapy. A novel tetracyclic condensed quinoline compound, 8-methoxypyrimido 4 `,5 `: 4,5] thieno(2,3-b) quinoline-4(3H)-one (MPTQ) is a structural analogue of an anticancer drug ellipticine and has been reported to posses anticancer property. Study on MPTQ on neuroblastoma cells is very limited and mechanisms related to its cytotoxicity on neuroblastoma cells are completely unknown. Here, we evaluated the anticancer property of MPTQ on mouse neuro 2a and human SH-SY5Y neuroblastoma cells and investigated the mechanisms underlying MPTQ-mediated neuro 2a cell death. MPTQ-mediated neuro 2a and SH-SY5Y cell deaths were found to be dose and time dependent. Moreover, MPTQ induced cell death reached approximately 99.8% and 90% in neuro 2a and SH-SY5Y cells respectively. Nuclear oligonucleosomal DNA fragmentation and Terminal dUTP Nick End Labelling assays indicated MPTQ-mediated neuro 2a cell death involved apoptosis. MPTQ-mediated apoptosis is associated with increased phosphorylation of p53 at Ser15 and Ser20 which correlates with the hyperphosphorylation of Ataxia-Telangiectasia mutated protein (ATM). Immunocytochemical analysis demonstrated the increased level of Bax protein in MPTQ treated neuro 2a cells. MPTQ-mediated apoptosis is also associated with increased activation of caspase-9, -3 and -7 but not caspase-2 and -8. Furthermore, increased level of caspase-3 and cleaved Poly ( ADP Ribose) polymerase were observed in the nucleus of MPTQ treated neuro 2a cells, suggesting the involvement of caspase-dependent intrinsic but not extrinsic apoptotic pathway. Increased nuclear translocation of apoptosis inducing factor suggests additional involvement of caspase-independent apoptosis pathway in MPTQ treated neuro 2a cells. Collectively, MPTQ-induced neuro 2a cell death is mediated by ATM and p53 activation, and Bax-mediated activation of caspase-dependent and caspase-independent mitochondrial apoptosis pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Due to the functional defects in apoptosis signaling molecules or deficient activation of apoptosis pathways, leukemia has become an aggressive disease with poor prognosis. Although the majority of leukemia patients initially respond to chemotherapy, relapse is still the leading cause of death. Hence targeting apoptosis pathway would be a promising strategy for the improved treatment of leukemia. Hydantoin derivatives possess a wide range of important biological and pharmacological properties including anticancer properties. Here we investigated the antileukemic activity and mechanism of action of one of the potent azaspiro hydantoin derivative, (ASHD). Materials and Methods: To investigate the antileukemic efficacy of ASHD, we have used MTT assay, cell cycle analysis by FACS, tritiated thymidine incorporation assay, Annexin V staining, JC1 staining and western blot analysis. Results: Results showed that ASHD was approximately 3-fold more potent than the parent compounds in inducing cytotoxicity. Tritiated thymidine assay in conjunction with cell cycle analysis suggests that ASHD inhibited the growth of leukemic cells. The limited effect of ASHD on cell viability of normal cells indicated that it may be specifically directed to cancer cells. Translocation of phosphatidyl serine, activation of caspase 3, caspase 9, PARP, alteration in the ratio of BCL2/BAD protein expression as well as the loss of mitochondrial membrane potential suggests activation of the intrinsic pathway of apoptosis. Conclusion: These results could facilitate the future development of novel hydantoin derivatives as chemotherapeutic agents for leukemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conceptual design involves identification of required functions of the intended design, generation of concepts to fulfill these functions, and evaluation of these concepts to select the most promising ones for further development. The focus of this paper is the second phase-concept generation, in which a challenge has been to develop possible physical embodiments to offer designers for exploration and evaluation. This paper investigates the issue of how to transform and thus synthesise possible generic physical embodiments and reports an implemented method that could automatically generate these embodiments. In this paper, a method is proposed to transform a variety of possible initial solutions to a design problem into a set of physical solutions that are described in terms of abstraction of mechanical movements. The underlying principle of this method is to make it possible to link common attributes between a specific abstract representation and its possible physical objects. For a given input, this method can produce a set of concepts in terms of their generic physical embodiments. The method can be used to support designers to start with a given input-output function and systematically search for physical objects for design consideration in terms of simplified functional, spatial, and mechanical movement requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondria have a central role in the intrinsic pathway of apoptosis and involve activation of several transmembrane channels leading to release of death factors. Reduced expression of a mitochondrial J-protein DnaJC15 was associated with the development of chemoresistance in ovarian cancer cells. DnaJC15 was found to be a part of mitochondrial protein-transport machinery, though its connection with cell death mechanisms is still unclear. In the present study, we have provided evidence towards a novel function of DnaJC15 in regulation of mitochondrial permeability transition pore (MPTP) complex in normal and cancer cells. Overexpression of DnaJC15 resulted in MPTP opening and induction of apoptosis, whereas reduced amount of protein suppressed MPTP activation, upon cisplatin treatment. DnaJC15 was found to exert its proapoptotic function through the essential component of MPTP, cyclophilin D (CypD). Our results reveal a specific role of DnaJC15 in recruitment and coupling of CypD with mitochondrial permeability transition. In summary, our analysis provides first-time insights on the functional connection between mitochondrial inner membrane protein translocation machinery-associated J-protein DnaJC15 and regulation of cell death pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a complex disease which arises due to a series of genetic changes related to cell division and growth control. Cancer remains the second leading cause of death in humans next to heart diseases. As a testimony to our progress in understanding the biology of cancer and developments in cancer diagnosis and treatment methods, the overall median survival time of all cancers has increased six fold one year to six years during the last four decades. However, while the median survival time has increased dramatically for some cancers like breast and colon, there has been only little change for other cancers like pancreas and brain. Further, not all patients having a single type of tumour respond to the standard treatment. The differential response is due to genetic heterogeneity which exists not only between tumours, which is called intertumour heterogeneity, but also within individual tumours, which is called intratumoural heterogeneity. Thus it becomes essential to personalize the cancer treatment based on a specific genetic change in a given tumour. It is also possible to stratify cancer patients into low- and high-risk groups based on expression changes or alterations in a group of genes gene signatures and choose a more suitable mode of therapy. It is now possible that each tumour can be analysed using various high-throughput methods like gene expression profiling and next-generation sequencing to identify its unique fingerprint based on which a personalized or tailor-made therapy can be developed. Here, we review the important progress made in the recent years towards personalizing cancer treatment with the use of gene signatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current work reports optical diagnostic measurements of fuel-air mixing and vortex structure in a single cavity trapped vortex combustor (TVC). Specifically, the mixture fraction using acetone PLIF technique in the non-reacting flow, and PIV measurements in the reacting flow are reported for the first time in trapped vortex combustors. The fuel-air momentum flux ratio, where the air momentum corresponds to that entering the cavity through a specially-incorporated flow guide vane, is used to characterize the mixing. The acetone PLIF experiments show that at high momentum flux ratios, the fuel-air mixing in the cavity is very minimal and is enhanced as the momentum flux ratio reduces, due to a favourable vortex formation in the cavity. Stoichiometric mixture fraction surfaces show that the mixing causes the reaction surfaces to shift from non-premixed to partially-premixed stratified mixtures. PIV measurements conducted in the non-reacting flow in the cavity further reinforce this observation. The scalar dissipation rates of mixture fraction were compared with the contours of RMS of fluctuating velocity and showed very good agreement. The regions of maximum mixing are observed to be along the fuel air interface. Reacting flow Ply measurements which differ substantially from the non-reacting cases primarily because of the heat release from combustion and the resulting gas expansion show that the vortex is displaced from the centre of the cavity towards the guide vane. Overall, the measurements show interesting features of the flow including the presence of the dual cavity structure and lead to a clear understanding of the underlying physics of the cavity flow highlighting the importance of the fuel-air momentum ratio parameter. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aberrant DNA replication, defects in the protection, and restart of stalled replication forks are major causes of genome instability in all organisms. Replication fork reversal is emerging as an evolutionarily conserved physiological response for restart of stalled forks. Escherichia coli RecG, RuvAB, and RecA proteins have been shown to reverse the model replication fork structures in vitro. However, the pathways and the mechanisms by which Mycobacterium tuberculosis, a slow growing human pathogen, responds to different types of replication stress and DNA damage are unclear. Here, we show that M. tuberculosis RecG rescues E. coli Delta recG cells from replicative stress. The purified M. tuberculosis RecG (MtRecG) and RuvAB(MtRuvAB) proteins catalyze fork reversal of model replication fork structures with and without a leading strand single-stranded DNA gap. Interestingly, single-stranded DNA-binding protein suppresses the MtRecG- and MtRuvAB-mediated fork reversal with substrates that contain lagging strand gap. Notably, our comparative studies with fork structures containing template damage and template switching mechanism of lesion bypass reveal that MtRecG but not MtRuvAB or MtRecA is proficient in driving the fork reversal. Finally, unlike MtRuvAB, we find that MtRecG drives efficient reversal of forks when fork structures are tightly bound by protein. These results provide direct evidence and valuable insights into the underlying mechanism of MtRecG-catalyzed replication fork remodeling and restart pathways in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of apoptosis signal regulating kinase 1 (ASK1)-p38 MAPK death signaling cascade is irn plicated in the death of dopaminergic neurons in substantia nigra in Parkinson's disease (PD). We investigated upstream activators of ASK1 using an MPTP mouse model of parkinsonism and assessed the temporal cascade of death signaling in ventral midbrain (VMB) and striatum (ST). MPTP selectively activated ASK1 and downstream 1)38 MAPK in a time dependent manner in VMB alone. This occurred through selective protein thiol oxidation of the redox-sensitive thiol disulfide oxidoreductase, thiorcdoxin (Trxl), resulting in release of its inhibitory association with ASK1, while glutathione-S-transferase ji 1 (GSTM1) remained in reduced form in association with ASK1. Levels of tumor necrosis factor (TNF), a known activator of ASK1, increased early after MPTP in VMB. Protein ovariation netvvork analysis (PCNA) using protein states as nodes revealed TNF to be an important node regulating the ASK1 signaling cascade. In confirmation, blocking MPTP-mecliated TNF signaling through intrathecal administration of TNFneutralizing antibody prevented Trxl oxidation and downstream ASK1-p38 MAPK activation. Averting an early increase in TNF, which leads to protein thiol oxidation resulting in activation of ASK1-p38 signaling, may be critical for neuroprotection in PD. Importantly, network analysis can help in understanding the cause/effect relationship within protein networks in complex disease states. (C) 2015 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple composite design methodology has been developed from the basic principles of composite component failure. This design approach applies the principles of stress field matching to develop suitable reinforcement patterns around three-dimensional details such as lugs in mechanical components. The resulting patterns are essentially curvilinear orthogonal meshes, adjusted to meet the restrictions imposed by geometric restraints and the intended manufacturing process. Whilst the principles behind the design methodology can be applied to components produced by differing manufacturing processes, the results found from looking at simple generic example problems suggest a realistic and practical generic manufacturing approach. The underlying principles of the design methodology are described and simple analyses are used to help illustrate both the methodology and how such components behave. These analyses suggest it is possible to replace high-strength steel lugs with composite components whose strength-to-weight ratio is some 4-5 times better. © 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is paramount that any child or adolescent with a suspected disorder of sex development (DSD) is assessed by an experienced clinician with adequate knowledge about the range of conditions associated with DSD. If there is any doubt, the case should be discussed with the regional team. In most cases, particularly in the case of the newborn, the paediatric endocrinologist within the regional DSD team acts as the first point of contact. The underlying pathophysiology of DSD and the strengths and weaknesses of the tests that can be performed should be discussed with the parents and affected young person and tests undertaken in a timely fashion. This clinician should be part of a multidisciplinary team experienced in management of DSD and should ensure that the affected person and parents are as fully informed as possible and have access to specialist psychological support. Finally, in the field of rare conditions, it is imperative that the clinician shares the experience with others through national and international clinical and research collaboration. © 2011 Blackwell Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Teeth were taken from 120 bottlenose dolphins, Tursiops truncatus, which had stranded on the mid-Atlantic coast of the United States. The number of annual growth layer groups (GLGs) for each animal was used to construct a growth curve. The growth rate of coastal North Atlantic Ocean Tursiops is similar to other cetaceans in having a high initial rate of growth, with no differences in growth between females and males. In females, the first dentinal GLG is thickest and is followed by GLGs which become progressively narrower. In males, the second GLG is thicker than the first; GLGs beyond number two become progressively smaller but at a slower rate than in females. In males and females, the translucent layer makes up proportionally larger parts of the GLG as the animal ages, but in males the percent translucent layer remains constant at about 50% while in females it continues to increase up to about 70% of the GLG. These two factors, GLGs width and translucent layer width, indicate that the sex and age of the animal influence the deposition of GLGs. Incremental layers are also present, averaging 12 per GLG, and seem similar to incremental layers described in other marine mammals. A plot of the relationship of percent growth of the last GLG to time of death suggests that the deposition of GLGs is relatively constant, at least during the first half of the year, and that North Atlantic Ocean Tursiops give birth in the fall as well as in the spring. (PDF contains 31 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small catalytic groups. Several studies performed using "metabolic networks models'' are helping to understand the degree of functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used "dissipative metabolic networks'' (DMNs) to show that enzymes can present a self-organized global functional structure, in which several sets of enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this kind of functional structure does, indeed, exist in several microorganisms. Methodology/Principal Findings: Here we have analyzed around 2.500.000 different DMNs in order to investigate the underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of enzymes always in an active state. Conclusions/Significance: This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally characterize these enzymatic self-organized global structures.