920 resultados para Ultrasound sensors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of the vertical distribution measurements of humidity in the atmosphere is very important in meteorology due to the crucial role that water vapor plays in the earth's energy budget. The radiosonde is the humidity measurement device that provides the best vertical resolution. Also, radiosondes are the operational devices that are used to measure the vertical profile of atmospheric water vapor. The World Meteorological Organization (WMO) has carried out several intercomparison experiments at different climatic zones in order to identify the differences between the available commercial sensors. This article presents the results of an experiment that was carried out in Brazil in 2001 in which major commercial radiosonde manufacturers [e.g., Graw Radiosondes GmbH & Co., KG (Germany); MODEM (France); InterMet Systems (United States); Sippican, Inc. (United States); and Vaisala (Finland)] were involved. One of the main goals of this experiment was to evaluate the performance of the different humidity sensors in a tropical region. This evaluation was performed for different atmospheric layers and distinct periods of the day. It also considers the computation of the integrated water vapor (IWV). The results showed that the humidity measurements achieved by the different sensors were quite similar in the low troposphere (the bias median value regarding the RS80 was around 1.8%) and were quite dispersed in the superior layers (the median rms regarding the RS80 was around 14.9%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on a sensor array able to distinguish tastes and used to classify red wines. The array comprises sensing units made from Langmuir-Blodgett (LB) films of conducting polymers and lipids and layer-by-layer (LBL) films from chitosan deposited onto gold interdigitated electrodes. Using impedance spectroscopy as the principle of detection, we show that distinct clusters can be identified in principal component analysis (PCA) plots for six types of red wine. Distinction can be made with regard to vintage, vineyard and brands of the red wine. Furthermore, if the data are treated with artificial neural networks (ANNs), this artificial tongue can identify wine samples stored under different conditions. This is illustrated by considering 900 wine samples, obtained with 30 measurements for each of the five bottles of the six wines, which could be recognised with 100% accuracy using the algorithms Standard Backpropagation and Backpropagation momentum in the ANNs. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The versatility of sensor arrays made from nanostructured Langmuir-Blodgett (LB) and layer-by-layer (LBL) films is demonstrated in two ways. First, different combinations of sensing units are employed to distinguish the basic tastes, viz. sweet, sour, bitter, and salty tastes, produced, respectively, by small concentrations (down to 0.01 g/mol) of sucrose, HCl, quinine, and NaCl solutions. The sensing units are comprised of LB and/or LBL films from semiconducting polymers, a ruthenium complex, and sulfonated lignin. Then, sensor arrays were used to identify wines from different sources, with the high distinguishing ability being demonstrated in principal component analysis (PCA) plots. Particularly important was the fact that the sensing ability does not depend on specific interactions between analytes and the film materials, but a judicious choice of materials is, nevertheless, required for the materials to respond differently to a given sample. It is also shown that the interaction with the analyte may affect the morphology of the nanostructured films, as indicated with scanning electron microscopy. For instance, in wine analysis these changes are not irreversible and the original film morphology is retrieved if the sensing unit is washed with copious amounts of water, thus allowing the sensor unit to be reused.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical sensors made from nanostructured films of poly(o-ethoxyaniline) POEA and poly(sodium 4-styrene sulfonate) PSS are produced and used to detect and distinguish 4 chemicals in solution at 20 mM, including sucrose, NaCl, HCl, and caffeine. These substances are used in order to mimic the 4 basic tastes recognized by humans, namely sweet, salty, sour, and bitter, respectively. The sensors are produced by the deposition of POEA/PSS films at the top of interdigitated microelectrodes via the layer-by-layer technique, using POEA solutions containing different dopant acids. Besides the different characteristics of the POEA/PSS films investigated by UV-Vis and Raman spectroscopies, and by atomic force microscopy.. it is observed that their electrical response to the different chemicals in liquid media is very fast, in the order of seconds, systematical, reproducible, and extremely dependent on the type of acid used for film fabrication. The responses of the as-prepared sensors are reproducible and repetitive after many cycles of operation. Furthermore, the use of an "electronic tongue" composed by an array of these sensors and principal component analysis as pattern recognition tool allows one to reasonably distinguish test solutions according to their chemical composition. (c) 2007 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives To evaluate the presence of fungi on contact electrodes and ultrasound transducers from physiotherapy clinics.Design Quantitative study conducted at the Laboratory of Microbiology and Immunology, Faculty of Health Sciences and Technology of Piaui - NOVAFAPI, Teresina, Brazil.Setting Sample collection was performed in 10 clinics ( 20 ultrasound transducers and 20 contact electrodes).Main outcome measures Swabs were soaked with saline solution, inoculated in culture and incubated for filamentous fungi and yeast growth.Results Fourteen taxons were identified: Acremomium hyalinulum (Sacc.), Aspergillus terreus, Candida albicans, Cladosporium cladosporioides, Cladosporium elatum, Cladosporium oxysporum, Cladosporium sphaerospermum, Cladosphialophora bantiana, Curvularia clavata, Curvularia senegalensis, Fusarium oxysporum, Penicillium decumbens, Scopulariopsis candida and Sporothrix schenckii. Aspergillus terreus, Cladosporium oxysporum, Sporothrix shenckii and Candida albicans were found most often on contact electrodes, and Penicillium decumbens and Cladosporium cladosporioides were found most often on ultrasound transducers.Conclusion Fungi were found on all of the contact electrodes and ultrasound transducers. Physiotherapy professionals need to improve the disinfection procedures for this equipment. (C) 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)