924 resultados para Tyrosine kinase receptor


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The G protein-coupled μ-opioid receptor (μOR) mediates the physiological effects of endogenous opioid peptides as well as the structurally distinct opioid alkaloids morphine and etorphine. An intriguing feature of μOR signaling is the differential receptor trafficking and desensitization properties following activation by distinct agonists, which have been proposed as possible mechanisms related to opioid tolerance. Here we report that the ability of distinct opioid agonists to differentially regulate μOR internalization and desensitization is related to their ability to promote G protein-coupled receptor kinase (GRK)-dependent phosphorylation of the μOR. Although both etorphine and morphine effectively activate the μOR, only etorphine elicits robust μOR phosphorylation followed by plasma membrane translocation of β-arrestin and dynamin-dependent receptor internalization. In contrast, corresponding to its inability to cause μOR internalization, morphine is unable to either elicit μOR phosphorylation or stimulate β-arrestin translocation. However, upon the overexpression of GRK2, morphine gains the capacity to induce μOR phosphorylation, accompanied by the rescue of β-arrestin translocation and receptor sequestration. Moreover, overexpression of GRK2 also leads to an attenuation of morphine-mediated inhibition of adenylyl cyclase. These findings point to the existence of marked differences in the ability of different opioid agonists to promote μOR phosphorylation by GRK. These differences may provide the molecular basis underlying the different analgesic properties of opioid agonists and contribute to the distinct ability of various opioids to induce drug tolerance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

TNF-induced activation of the transcription factor NF-κB and the c-jun N-terminal kinase (JNK/SAPK) requires TNF receptor-associated factor 2 (TRAF2). The NF-κB-inducing kinase (NIK) associates with TRAF2 and mediates TNF activation of NF-κB. Herein we show that NIK interacts with additional members of the TRAF family and that this interaction requires the conserved “WKI” motif within the TRAF domain. We also investigated the role of NIK in JNK activation by TNF. Whereas overexpression of NIK potently induced NF-κB activation, it failed to stimulate JNK activation. A kinase-inactive mutant of NIK was a dominant negative inhibitor of NF-κB activation but did not suppress TNF- or TRAF2-induced JNK activation. Thus, TRAF2 is the bifurcation point of two kinase cascades leading to activation of NF-κB and JNK, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An early stage in thymocyte development, after rearrangement of the β chain genes of the T cell receptor (TCR), involves expression of the pre-TCR complex and accompanying differentiation of CD4−CD8− double negative (DN) cells to CD4+CD8+ double positive (DP) cells. The ZAP-70 and Syk tyrosine kinases each contain two N-terminal SH2 domains that bind phosphorylated motifs in antigen receptor subunits and are implicated in pre-T receptor signaling. However, mice deficient in either ZAP-70 or Syk have no defect in the formation of DP thymocytes. Here we show that, in mice lacking both Syk and ZAP-70, DN thymocytes undergo β chain gene rearrangement but fail to initiate clonal expansion and are incapable of differentiating into DP cells after expression of the pre-TCR. These data suggest that the ZAP-70 and Syk tyrosine kinases have crucial but overlapping functions in signaling from the pre-TCR and hence in early thymocyte development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Tec family of tyrosine kinases are involved in signals emanating from cytokine receptors, antigen receptors, and other lymphoid cell surface receptors. One family member, ITK (inducible T cell kinase), is involved in T cell activation and can be activated by the T cell receptor and the CD28 cell surface receptor. This stimulation of tyrosine phosphorylation and activation of ITK can be mimicked by the Src family kinase Lck. We have explored the mechanism of this requirement for Src family kinases in the activation of ITK. We found that coexpression of ITK and Src results in increased membrane association, tyrosine phosphorylation and activation of ITK, which could be blocked by inhibitors of the lipid kinase phosphatidylinositol 3-kinase (PI 3-kinase) as well as overexpression of the p85 subunit of PI 3-kinase. Removal of the Pleckstrin homology domain (PH) of ITK resulted in a kinase that could no longer be induced to localize to the membrane or be activated by Src. The PH of ITK was also able to bind inositol phosphates phosphorylated at the D3 position. Membrane targeting of ITK without the PH recovered its ability to be activated by Src. These results suggest that ITK can be activated by a combination of Src and PI 3-kinase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a homodimeric member of the cystine knot family of growth factors, with limited sequence homology to platelet-derived growth factor (PDGF) and transforming growth factor β2 (TGF-β). We have determined its crystal structure at a resolution of 2.5 Å, and identified its kinase domain receptor (KDR) binding site using mutational analysis. Overall, the VEGF monomer resembles that of PDGF, but its N-terminal segment is helical rather than extended. The dimerization mode of VEGF is similar to that of PDGF and very different from that of TGF-β. Mutational analysis of VEGF reveals that symmetrical binding sites for KDR are located at each pole of the VEGF homodimer. Each site contains two functional “hot spots” composed of binding determinants presented across the subunit interface. The two most important determinants are located within the largest hot spot on a short, three-stranded sheet that is conserved in PDGF and TGF-β. Functional analysis of the binding epitopes for two receptor-blocking antibodies reveal different binding determinants near each of the KDR binding hot spots.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The β-adrenergic receptor kinase 1 (βARK1) is a member of the G protein-coupled receptor kinase (GRK) family that mediates the agonist-dependent phosphorylation and desensitization of G protein-coupled receptors. We have cloned and disrupted the βARK1 gene in mice by homologous recombination. No homozygote βARK1−/− embryos survive beyond gestational day 15.5. Prior to gestational day 15.5, βARK1−/− embryos display pronounced hypoplasia of the ventricular myocardium essentially identical to the “thin myocardium syndrome” observed upon gene inactivation of several transcription factors (RXRα, N-myc, TEF-1, WT-1). Lethality in βARK1−/− embryos is likely due to heart failure as they exhibit a >70% decrease in cardiac ejection fraction determined by direct in utero intravital microscopy. These results along with the virtual absence of endogenous GRK activity in βARK1−/− embryos demonstrate that βARK1 appears to be the predominant GRK in early embryogenesis and that it plays a fundamental role in cardiac development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Smad proteins are critical intracellular mediators of signaling by growth and differentiation factors of the transforming growth factor β superfamily. We have isolated a member of the Smad family, Smad8, from a rat brain cDNA library and biochemically and functionally characterized its ability to transduce signals from serine kinase receptors. In Xenopus embryo, Smad8 is able to transcriptionally activate a subset of mesoderm target genes similar to those induced by the receptor serine kinase, activin receptor-like kinase (ALK)-2. Smad8 can be specifically phosphorylated by a constitutively active ALK-2 but not the related receptor serine kinase, ALK-4. In response to signaling from ALK-2, Smad8 associates with a common regulatory molecule, Smad4, and this association leads to a synergistic effect on gene transcription. Furthermore, Smad8 is able to rescue the expression of mesoderm genes blocked by truncated ALK-2 in the embryo. These results indicate that Smad8 can function as a downstream signaling mediator of ALK-2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

G protein-coupled receptor activation leads to the membrane recruitment and activation of G protein-coupled receptor kinases, which phosphorylate receptors and lead to their inactivation. We have identified a novel G protein-coupled receptor kinase-interacting protein, GIT1, that is a GTPase-activating protein (GAP) for the ADP ribosylation factor (ARF) family of small GTP-binding proteins. Overexpression of GIT1 leads to reduced β2-adrenergic receptor signaling and increased receptor phosphorylation, which result from reduced receptor internalization and resensitization. These cellular effects of GIT1 require its intact ARF GAP activity and do not reflect regulation of GRK kinase activity. These results suggest an essential role for ARF proteins in regulating β2-adrenergic receptor endocytosis. Moreover, they provide a mechanism for integration of receptor activation and endocytosis through regulation of ARF protein activation by GRK-mediated recruitment of the GIT1 ARF GAP to the plasma membrane.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Maintenance of lasting synaptic efficacy changes requires protein synthesis. We report here a mechanism that might influence translation control at the level of the single synapse. Stimulation of metabotropic glutamate receptors in hippocampal slices induces a rapid protein kinase C-dependent translocation of multifunction kinase p90rsk to polyribosomes; concomitantly, there is enhanced phosphorylation of at least six polyribosome binding proteins. Among the polyribosome bound proteins are the p90rsk-activating kinase ERK-2 and a known p90rsk substrate, glycogen synthase kinase 3β, which regulates translation efficiency via eukaryotic initiation factor 2B. Thus metabotropic glutamate receptor stimulation could induce synaptic activity-dependent translation via translocation of p90rsk to ribosomes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

N-methyl-d-aspartate receptors (NMDARs) are Ca2+-permeable glutamate-gated ion channels whose physiological properties in neurons are modulated by protein kinase C (PKC). The present study was undertaken to determine the role in PKC-induced potentiation of the NR1 and NR2A C-terminal tails, which serve as targets of PKC phosphorylation [Tingley, W. G., Ehlers, M. D., Kameyama, K., Doherty, C., Ptak, J. B., Riley, C. T. & Huganir, R. L. (1997) J. Biol. Chem. 272, 5157–5166]. Serine residue 890 in the C1 cassette is a primary target of PKC phosphorylation and a critical residue in receptor clustering at the membrane. We report herein that the presence of the C1 cassette reduces PKC potentiation and that mutation of Ser-890 significantly restores PKC potentiation. Splicing out or deletion of other C-terminal cassettes singly or in combination had little or no effect on PKC potentiation. Moreover, experiments involving truncation mutants reveal the unexpected finding that NMDARs assembled from subunits lacking all known sites of PKC phosphorylation can show PKC potentiation. These results indicate that PKC-induced potentiation of NMDAR activity does not occur by direct phosphorylation of the receptor protein but rather of associated targeting, anchoring, or signaling protein(s). PKC potentiation of NMDAR function is likely to be an important mode of NMDAR regulation in vivo and may play a role in NMDA-dependent long-term potentiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We reported previously that a conformation-specific antibody, Ab P2, to a 16-amino acid peptide (Glu-Gly-Tyr-Lys-Lys-Lys-Tyr-Gln-Gln-Val-Asp-Glu-Glu-Phe-Leu-Arg) of the cytoplasmic domain of the β-type platelet-derived growth factor receptor also recognizes the epidermal growth factor (EGF) receptor. Although the antibody is not directed to phosphotyrosine, it recognizes in immunoprecipitation the activated and hence phosphorylated form of both receptors. In P2 peptide, there are two tripeptide sequences, Asp-Glu-Glu and Tyr-Gln-Gln, that are also present in the EGF receptor. Our present studies using either EGF receptor C-terminal deletion mutants or point mutations (Tyr→Phe) and our previous studies on antibody inhibition by P2-derived peptides suggest that Gln-Gln in combination with Asp-Glu-Glu forms a high-affinity complex with Ab P2 and that such complex formation is dependent on tyrosine phosphorylation. Of the five phosphate acceptor sites in the EGF receptor, clustered in the extreme C-terminal tail, phosphorylation of three tyrosine residues (992, 1068, and 1086) located between Asp-Glu-Glu and Gln-Gln is necessary for Ab P2 binding. In contrast, the acceptor sites Tyr 1173 and 1148 play no role in the conformation change. Asp-Glu-Glu and Gln-Gln are located 169 amino acids apart, and it is highly likely that the interactions among three negatively charged phosphotyrosine residues in the receptor C terminus may result in the bending of the peptide chain in such a way that these two peptides come close to each other to form an antibody-binding site. Such a possibility is also supported by our finding that receptor dephosphorylation results in complete loss of Ab P2–binding activity. In conclusion, we have identified a domain within the cytoplasmic part of the EGF receptor whose conformation is altered by receptor phosphorylation; furthermore, we have identified the tyrosine residues that positively regulate this conformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Members of the transforming growth factor-β (TGF-β) superfamily signal through heteromeric type I and type II serine/threonine kinase receptors. Transgenic mice that overexpress a dominant-negative mutation of the TGF-β type II receptor (DNIIR) under the control of a metallothionein-derived promoter (MT-DNIIR) were used to determine the role of endogenous TGF-βs in the developing mammary gland. The expression of the dominant-negative receptor was induced with zinc and was primarily localized to the stroma underlying the ductal epithelium in the mammary glands of virgin transgenic mice from two separate mouse lines. In MT-DNIIR virgin females treated with zinc, there was an increase in lateral branching of the ductal epithelium. We tested the hypothesis that expression of the dominant-negative receptor may alter expression of genes that are expressed in the stroma and regulated by TGF-βs, potentially resulting in the increased lateral branching seen in the MT-DNIIR mammary glands. The expression of hepatocyte growth factor mRNA was increased in mammary glands from transgenic animals relative to the wild-type controls, suggesting that this factor may play a role in TGF-β-mediated regulation of lateral branching. Loss of responsiveness to TGF-βs in the mammary stroma resulted in increased branching in mammary epithelium, suggesting that TGF-βs play an important role in the stromal–epithelial interactions required for branching morphogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanisms responsible for coated pit formation in cells remain unknown, but indirect evidence has argued both for and against a critical role of receptor cytoplasmic domains in the process. If the endocytic motifs of receptors are responsible for recruiting AP2 to the plasma membrane, thereby driving coated pit formation, then the level of constitutively internalized receptors at the membrane would be expected to govern the steady-state level of coated pits in cells. Here we directly test this hypothesis for broad classes of receptors containing three distinct constitutive internalization signals. Chimeric proteins consisting of an integral membrane reporter protein (Tac) coupled to cytoplasmic domains bearing tyrosine-, di-leucine-, or acidic cluster/casein kinase II-based internalization signals were overexpressed to levels that saturated the internalization pathway. Quantitative confocal immunofluorescence microscopy indicated that the number of plasma membrane clathrin-coated pits and the concentration of their structural components were invariant when comparing cells expressing saturating levels of the chimeric receptors to nonexpressing cells or to cells expressing only the Tac reporter lacking cytoplasmic internalization signals. Biochemical analysis showed that the distribution of coat proteins between assembled coated pits and soluble pools was also not altered by receptor overexpression. Finally, the cellular localizations of AP2 and AP1 were similarly unaffected. These results provide a clear indication that receptor endocytic signals do not determine coated pit levels by directly recruiting AP2 molecules. Rather, the findings support a model in which coated pit formation proceeds through recruitment and activation of AP2, likely through a limited number of regulated docking sites that act independently of endocytic signals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Observations in reconstituted systems and transfected cells indicate that G-protein receptor kinases (GRKs) and β-arrestins mediate desensitization and endocytosis of G-protein–coupled receptors. Little is known about receptor regulation in neurons. Therefore, we examined the effects of the neurotransmitter substance P (SP) on desensitization of the neurokinin-1 receptor (NK1-R) and on the subcellular distribution of NK1-R, Gαq/11, GRK-2 and -3, and β-arrestin-1 and -2 in cultured myenteric neurons. NK1-R was coexpressed with immunoreactive Gαq/11, GRK-2 and -3, and β-arrestin-1 and -2 in a subpopulation of neurons. SP caused 1) rapid NK1-R–mediated increase in [Ca2+]i, which was transient and desensitized to repeated stimulation; 2) internalization of the NK1-R into early endosomes containing SP; and 3) rapid and transient redistribution of β-arrestin-1 and -2 from the cytosol to the plasma membrane, followed by a striking redistribution of β-arrestin-1 and -2 to endosomes containing the NK1-R and SP. In SP-treated neurons Gαq/11 remained at the plasma membrane, and GRK-2 and -3 remained in centrally located and superficial vesicles. Thus, SP induces desensitization and endocytosis of the NK1-R in neurons that may be mediated by GRK-2 and -3 and β-arrestin-1 and -2. This regulation will determine whether NK1-R–expressing neurons participate in functionally important reflexes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Androgen receptor (AR) belongs to the nuclear receptor superfamily and mediates the biological actions of male sex steroids. In this work, we have characterized a novel 130-kDa Ser/Thr protein kinase ANPK that interacts with the zinc finger region of AR in vivo and in vitro. The catalytic kinase domain of ANPK shares considerable sequence similarity with the minibrain gene product, a protein kinase suggested to contribute to learning defects associated with Down syndrome. However, the rest of ANPK sequence, including the AR-interacting interface, exhibits no apparent homology with other proteins. ANPK is a nuclear protein that is widely expressed in mammalian tissues. Its overexpression enhances AR-dependent transcription in various cell lines. In addition to the zinc finger region, ligand-binding domain and activation function AF1 of AR are needed, as the activity of AR mutants devoid of these domains was not influenced by ANPK. The receptor protein does not appear to be a substrate for ANPK in vitro, and overexpression of ANPK does not increase the extent of AR phosphorylation in vivo. In view of this, it is likely that ANPK-mediated activation of AR function is exerted through modification of AR-associated proteins, such as coregulatory factors, and/or through stabilization of the receptor protein against degradation.