987 resultados para Typical load profile
Resumo:
CONTEXT: A broad spectrum of GnRH-deficient phenotypes has been identified in individuals with both mono- and biallelic GNRHR mutations. OBJECTIVE: The objective of the study was to determine the correlation between the severity of the reproductive phenotype(s) and the number and functional severity of rare sequence variants in GNRHR. SUBJECTS: Eight hundred sixty-three probands with different forms of GnRH deficiency, 46 family members and 422 controls were screened for GNRHR mutations. The 70 subjects (32 patients and 38 family members) harboring mutations were divided into four groups (G1-G4) based on the functional severity of the mutations (complete or partial loss of function) and the number of affected alleles (monoallelic or biallelic) with mutations, and these classes were mapped on their clinical phenotypes. RESULTS: The prevalence of heterozygous rare sequence variants in GNRHR was significantly higher in probands vs. controls (P < 0.01). Among the G1-G3 groups (homozygous subjects with successively decreasing severity and number of mutations), the hypogonadotropic phenotype related to their genetic load. In contrast, subjects in G4, with only monoallelic mutations, demonstrated a greater diversity of clinical phenotypes. CONCLUSIONS: In patients with GnRH deficiency and biallelic mutations in GNRHR, genetic burden defined by severity and dose is associated with clinical phenotype. In contrast, for patients with monoallelic GNRHR mutations this correlation does not hold. Taken together, these data indicate that as-yet-unidentified genetic and/or environmental factors may combine with singly mutated GNRHR alleles to produce reproductive phenotypes.
Resumo:
During timber exploitation in forest stands harvesting machines pass repeatedly along the same track and can cause soil compaction, which leads to soil erosion and restricted tree root growth. The level of soil compaction depends on the number of passes and weight of the wood load. This paper aimed to evaluate soil compaction and eucalyptus growth as affected by the number of passes and wood load of a forwarder. The study was carried out in Santa Maria de Itabira county, Minas Gerais State - Brazil, on a seven-year-old eucalyptus stand planted on an Oxisol. The trees were felled by chainsaw and manually removed. Plots of 144 m² (four rows 12 m long in a 3 x 2 m spacing) were then marked off for the conduction of two trials. The first tested the traffic intensity of a forwarder which weighed 11,900 kg and carried 12 m³ wood (density of 480 kg m-3) and passed 2, 4, and 8 times along the same track. In the second trial, the forwarder carried loads of 4, 8, and 12 m³ of wood, and the machine was driven four times along the same track. In each plot, the passes affected four rows. Eucalyptus was planted in 30 x 30 x 30 cm holes on the compacted tracks. The soil in the area is clayey (470 clay and 440 g kg-1 sand content) and at depths of 0-5 cm and 5-10 cm, respectively, soil organic carbon was 406 and 272 g kg-1 and the moisture content during the trial 248 and 249 g kg-1. These layers were assessed for soil bulk density and water-stable aggregates. The infiltration rate was measured by a cylinder infiltrometer. After 441 days the measurements were repeated, with additional analyses of: soil organic carbon, total nitrogen, N-NH4+, N-NO3-, porosity, and penetration resistance. Tree height, stem diameter, and stem dry matter were measured. Forwarder traffic increased soil compaction, resistance to penetration and microporosity while it reduced the geometric mean diameter, total porosity, macroporosity and infiltration rate. Stem dry matter yield and tree height were not affected by soil compaction. Two passes of the forwarder were enough to cause the disturbances at the highest levels. The compaction effects were still persistent 441 days after forwarder traffic.
Resumo:
Neuroblastoma (NB) is the most common extracranial malignant tumor in young children and arises at any site of the sympathetic nervous system. The disease exhibits a remarkable phenotypic diversity ranging from spontaneous regression to fatal disease. Poor outcome results from a rapidly progressive, metastatic and drug-resistant disease. Recent studies have suggested that solid tumors may arise from a minor population of cancer stem cells (CSCs) with stem cell markers and typical properties such as self-renewal ability, asymmetric division and drug resistance. In this model, CSCs possess the exclusive ability to initiate and maintain the tumor, and to produce distant metastases. Tumor cell subpopulations with stem-like phenotypes have indeed been identified in several cancer including leukemia, breast, brain and colon cancers. CSC hypothesis still needs to be validated in the other cancers including NB.NB originates from neural crest-derived malignant sympatho-adrenal cells. We have identified rare cells that express markers in conformity with neural crest stem cells and their derived lineages within primary NB tissue and cell lines, leading us to postulate the existence of CSCs in NB tumors.In the absence of specific markers to isolate CSCs, we adapted to NB tumor cells the sphere functional assay, based on the ability of stem cells to grow as spheres in non-adherent conditions. By serial passages of spheres from bone marrow NB metastases, a subset of cells was gradually selected and its specific gene expression profile identified by micro-array time-course analysis. The differentially expressed genes in spheres are enriched in genes implicated in development including CD133, ABC-transporters, WNT and NOTCH genes, identified in others solid cancers as CSCs markers, and other new markers, all referred by us as the Neurosphere Expression Profile (NEP). We confirmed the presence of a cell subpopulation expressing a combination of the NEP markers within a few primary NB samples.The tumorigenic potential of NB spheres was assayed by in vivo tumor growth analyses using orthotopic (adrenal glands) implantations of tumor cells into immune-compromised mice. Tumors derived from the sphere cells were significantly more frequent and were detected earlier compared to whole tumor cells. However, NB cells expressing the neurosphere-associated genes and isolated from the bulk tumors did not recapitulate the CSC-like phenotype in the orthotopic model. In addition, the NB sphere cells lost their higher tumorigenic potential when implanted in a subcutaneous heterotopic in vivo model.These results highlighted the complex behavior of CSC functions and led us to consider the stem-like NB cells as a dynamic and heterogeneous cell population influenced by microenvironment signals.Our approach identified for the first time candidate genes that may be associated with NB self-renewal and tumorigenicity and therefore would establish specific functional targets for more effective therapies in aggressive NB.
Resumo:
Arrays of vertically aligned ZnO:Cl/ZnO core-shell nanowires were used to demonstrate that the control of the coaxial doping profile in homojunction nanostructures can improve their surface charge carrier transfer while conserving potentially excellent transport properties. It is experimentally shown that the presence of a ZnO shell enhances the photoelectrochemical properties of ZnO:Cl nanowires up to a factor 5. Likewise, the ZnO shell promotes the visible photoluminescence band in highly conducting ZnO:Cl nanowires. These lines of evidence are associated with the increase of the nanowires" surface depletion layer
Resumo:
Several European telecommunications regulatory agencies have recently introduced a fixed capacity charge (flat rate) to regulate access to the incumbent's network. The purpose of this paper is to show that the optimal capacity charge and the optimal access-minute charge analysed by Armstrong, Doyle, and Vickers (1996) have a similar structure and imply the same payment for the entrant. I extend the analysis tothe case where there is a competitor with market power. In this case, the optimalcapacity charge should be modified to avoid that the entrant cream-skims the market,fixing a longer or a shorter peak period than the optimal. Finally, I consider a multiproduct setting, where the effect of the product differentiation is exacerbated.
Resumo:
The evolution of organic matter sources in soil is related to climate and vegetation dynamics in the past recorded in paleoenvironmental Quaternary deposits such as peatlands. For this reason, a Histosol of the mineralotrophic peatland from the Pau-de-Fruta Special Protection Area - SPA, Espinhaço Meridional, State of Minas Gerais, was described and characterized to evidence the soil constituent materials and properties as related to changes in environmental conditions, supported by the isotopic and elementary characterization of soil C and N and 14C ages. Samples were collected in a depression at 1,350 m asl, where Histosols are possibly more developed due to the great thickness (505 cm). Nowadays, the area is colonized by vegetation physiognomies of the Cerrado Biome, mainly rocky and wet fields (Campo Rupestre and Campo Úmido), aside from fragments of Semidecidual Seasonal Forest, called Capões forests. The results this study showed that early the genesis of the analyzed soil profile showed a high initial contribution of mostly herbaceous organic matter before 8,090 ± 30 years BP (14C age). In the lower-mid Holocene, between 8,090 ± 30 years AP (14C age) to ± 4,100 years BP (interpolated age), the vegetation gradually became more woody, with forest expansion, possibly due to increased humidity, suggesting the existence of a more woody Cerrado in the past than at present. Drier climate conditions than the current were concluded ± 2,500 years BP (interpolated age) and that after 430 years BP (14C age) the forest gave way to grassland, predominantly. After the dry season, humidity increased to the current conditions. Due to these climate fluctuations during the Holocene, three decomposition stages of organic matter were observed in the Histosols of this study, with prevalence of the most advanced (sapric), typical of a deposit in a highly advanced stage of pedogenetic evolution.
Resumo:
BACKGROUND: Normocalcemic primary hyperparathyroidism (PHPT-N) is a condition that may have similar long-term implications to primary hyperparathyroidism (PHPT); however, differential diagnosis and treatment for parathyroid disorders are not clearly defined. We investigated the effect of an oral peptone and an oral calcium load on calcium-regulating hormones in PHPT-N compared with PHPT and healthy controls to provide a new potential diagnostic tool. DESIGN: Case-control study. METHODS: We evaluated serum gastrin, PTH, ionized calcium, and phosphate responses to oral calcium (1 g) and peptone (10 g) load in 22 PHPT and 20 PHPT-N patients matched for PTH serum values. Moreover, 30 healthy subjects were enrolled as controls. In 12 patients for each group, we also performed the oral peptone test adding aluminum hydroxide (AH) to suppress phosphate absorption. RESULTS: In PHPT patients, PTH increased significantly 30 min after the oral peptone load, while no significant increase was found in PHPT-N and controls. After oral calcium load, PTH remained stable in PHPT while it decreased dramatically in PHPT-N patients, and ionized calcium increased significantly in each of the three groups. Peptones plus AH induced a blunted PTH increase in the three groups. CONCLUSIONS: Considering the marked difference in PTH response elicited by peptones in PHPT compared with PHPT-N, we suggest that the oral peptone test could be added to the diagnostic evaluation of PHPT patients. In case of absent response to peptones, patients should have their serum calcium levels assessed twice a year in accordance with recent guidelines.
Resumo:
Inbreeding avoidance is often invoked to explain observed patterns of dispersal, and theoretical models indeed point to a possibly important role. However, while inbreeding load is usually assumed constant in these models, it is actually bound to vary dynamically under the combined influences of mutation, drift, and selection and thus to evolve jointly with dispersal. Here we report the results of individual-based stochastic simulations allowing such a joint evolution. We show that strongly deleterious mutations should play no significant role, owing to the low genomic mutation rate for such mutations. Mildly deleterious mutations, by contrast, may create enough heterosis to affect the evolution of dispersal as an inbreeding-avoidance mechanism, but only provided that they are also strongly recessive. If slightly recessive, they will spread among demes and accumulate at the metapopulation level, thus contributing to mutational load, but not to heterosis. The resulting loss of viability may then combine with demographic stochasticity to promote population fluctuations, which foster indirect incentives for dispersal. Our simulations suggest that, under biologically realistic parameter values, deleterious mutations have a limited impact on the evolution of dispersal, which on average exceeds by only one-third the values expected from kin-competition avoidance.
Resumo:
Vibration-based damage identification (VBDI) techniques have been developed in part to address the problems associated with an aging civil infrastructure. To assess the potential of VBDI as it applies to highway bridges in Iowa, three applications of VBDI techniques were considered in this study: numerical simulation, laboratory structures, and field structures. VBDI techniques were found to be highly capable of locating and quantifying damage in numerical simulations. These same techniques were found to be accurate in locating various types of damage in a laboratory setting with actual structures. Although there is the potential for these techniques to quantify damage in a laboratory setting, the ability of the methods to quantify low-level damage in the laboratory is not robust. When applying these techniques to an actual bridge, it was found that some traditional applications of VBDI methods are capable of describing the global behavior of the structure but are most likely not suited for the identification of typical damage scenarios found in civil infrastructure. Measurement noise, boundary conditions, complications due to substructures and multiple material types, and transducer sensitivity make it very difficult for present VBDI techniques to identify, much less quantify, highly localized damage (such as small cracks and minor changes in thickness). However, while investigating VBDI techniques in the field, it was found that if the frequency-domain response of the structure can be generated from operating traffic load, the structural response can be animated and used to develop a holistic view of the bridge’s response to various automobile loadings. By animating the response of a field bridge, concrete cracking (in the abutment and deck) was correlated with structural motion and problem frequencies (i.e., those that cause significant torsion or tension-compression at beam ends) were identified. Furthermore, a frequency-domain study of operational traffic was used to identify both common and extreme frequencies for a given structure and loading. Common traffic frequencies can be compared to problem frequencies so that cost-effective, preventative solutions (either structural or usage-based) can be developed for a wide range of IDOT bridges. Further work should (1) perfect the process of collecting high-quality operational frequency response data; (2) expand and simplify the process of correlating frequency response animations with damage; and (3) develop efficient, economical, preemptive solutions to common damage types.
Resumo:
This guide provides a summary of the factors and design theories that should be considered when designing dowel load transfer systems for concrete pavement systems (including dowel basket design and fabrication) and presents recommendations for widespread adoption (i.e., standardization). Development of the guide was sponsored by the National Concrete Consortium with the goal of helping practitioners develop and implement dowel load transfer designs based on knowledge about current research and best practices.
Resumo:
Knowledge of the quantitative genetics of resistance to parasitism is key to appraise host evolutionary responses to parasite selection. Here, we studied effects of common origin (i.e. genetic and pre-hatching parental effects) and common rearing environment (i.e. post-hatching parental effects and other environment effects) on variance in ectoparasite load in nestling Alpine swifts (Apus melba). This colonial bird is intensely parasitized by blood sucking louse-flies that impair nestling development and survival. By cross-fostering half of the hatchlings between pairs of nests, we show strong significant effect of common rearing environment on variance (90.7% in 2002 and 90.9% in 2003) in the number of louse-flies per nestling and no significant effect of common origin on variance in the number of louse-flies per nestling. In contrast, significant effects of common origin were found for all the nestling morphological traits (i.e. body mass, wing length, tail length, fork length and sternum length) under investigation. Hence, our study suggests that genetic and pre-hatching parental effects play little role in the distribution of parasites among nestling Alpine swifts, and thus that nestlings have only limited scope for evolutionary responses against parasites. Our results highlight the need to take into consideration environmental factors, including the evolution of post-hatching parental effects such as nest sanitation, in our understanding of host-parasite relationships.
Resumo:
Soil management practices which increase the root depth penetration of citrus are important to the longevity and yield maintenance of this plant, especially in regions where long periods of drought are common, even in soil conventionally subsoiled to a depth of 30-40 cm, when the orchard was first established. The objective of this study was to evaluate the efficiency of subsoiling on the physical and hydric properties of a Typical Hapludult and fruit yield in a 14-year-old citrus orchard located in Piracicaba, SP. The treatments consisted of: no-subsoiling (with no tilling of the soil after the orchard was planted); subsoiling on one side of the plant lines (SUB. 1); and subsoiling on both sides of the plant lines (SUB. 2). The subsoiling treatments were carried out 1.5 m from the plant lines and to a depth of 0.8 m. Soil samples were taken 120 days after this operation, at four depths, in order to determine physical and hydric properties. Fruit yield was evaluated 150 days after subsoiling. Subsoiling between the plant lines of an old established citrus orchard alters the physical and hydric properties of the soil, which is reflected in increased soil macroporosity and unsaturated hydraulic conductivity, and reduced soil bulk density, critical degree-of-compactness and penetration resistance. The improvements in the physical and hydric properties of the soil were related to an increase in fruit number and orchard yield.
Resumo:
During an infection the antigen-nonspecific memory CD8 T cell compartment is not simply an inert pool of cells, but becomes activated and cytotoxic. It is unknown how these cells contribute to the clearance of an infection. We measured the strength of T cell receptor (TCR) signals that bystander-activated, cytotoxic CD8 T cells (BA-CTLs) receive in vivo and found evidence of limited TCR signaling. Given this marginal contribution of the TCR, we asked how BA-CTLs identify infected target cells. We show that target cells express NKG2D ligands following bacterial infection and demonstrate that BA-CTLs directly eliminate these target cells in an innate-like, NKG2D-dependent manner. Selective inhibition of BA-CTL-mediated killing led to a significant defect in pathogen clearance. Together, these data suggest an innate role for memory CD8 T cells in the early immune response before the onset of a de novo generated, antigen-specific CD8 T cell response.