999 resultados para Typical damage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Studies of the adverse neurobehavioral effects of maternal alcohol consumption on the fetus have been largely confined to the postnatal period, after exposure to alcohol has finished. This study explored the brain function of the fetus, at the time of exposure to alcohol, to examine its effect on information processing and stability of performance. Methods: Five groups of fetuses, defined by maternal alcohol consumption patterns, were examined: control (no alcohol); moderate (5 to 10 units/wk either drunk evenly across the week or as a binge, in 2 to 3 days); heavy (20+ units/wk drunk evenly or as a binge). Fetal habituation performance was examined on 3 occasions, separated by 7 days, beginning at 35 weeks of gestation. The number of trials required to habituate on each test session and the difference in performance across test sessions were recorded. Results: Fetuses exposed to heavy binge drinking required significantly more trials to habituate and exhibited a greater variability in performance across all test sessions than the other groups. Maternal drinking, either heavily but evenly or moderately as a binge, resulted in poorer habituation, and moderate binge drinking resulted in greater variability compared with no, or even, drinking. Conclusions: Decreased information processing, reflected by poorer habituation, and increased variability in performance may reflect the initial manifestations of structural damage caused by alcohol to the brain. These results will lead to a greater understanding of the effects of alcohol on the fetus's brain, enable the antenatal identification of fetal alcohol spectrum disorders, and lead to the early implementation of better management strategies. © 2012 by the Research Society on Alcoholism.


--------------------------------------------------------------------------------

Reaxys Database Information|

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The desorption of oligonucleotides by 3 mu m laser irradiation has been studied by laser induced fluorescence imaging of the resulting gas phase plumes. Fitting of the plume data has been achieved by using a modified Maxwell Boltzmann distribution which incorporates a range of stream velocities. Spatial density profiles, velocities and temperature variation have been determined from these fits indicating that the oligonucleotide plume only achieves a partial thermal relaxation. This laser desorption technique may provide a means of overcoming the limited mass range of gas phase biomolecules available from thermal evaporation techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation biophysics has sought to understand at a molecular level, the mechanisms through which ionizing radiations damage DNA, and other molecules within living cells. The complexity of lesions produced in the DNA by ionizing radiations is thought to depend on the amount of energy deposited at the site of each lesion. To study the relationship between the energy deposited and the damage produced, we have developed novel techniques for irradiating dry prasmid DNA, partially re-hydrated DNA and DNA in solution using monochromatic vacuum-UV synchrotron radiation. We have used photons in the energy range 7-150 eV, corresponding to the range of energies typically involved in the efficient production of DNA single-strand (SSB), and double-strand breaks (DSB) by ionizing radiation. The data show that both types of breaks are produced at all energies investigated (with, or without water present). Also, the energy dependence for DSB induction follows a similar trend to SSB induction but at a 20-30-fold reduced incidence, suggesting a common precursor for both types of damage. Preliminary studies where DNA has been irradiated in solution indicate a change in the shape of the dose-effect curve (from linear, to linear-quadratic for double-strand break induction) and a large increase in sensitivity due to the presence of water.