952 resultados para Two photon absorption and nonlinear


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overarching theme of this thesis is mesoscale optical and optoelectronic design of photovoltaic and photoelectrochemical devices. In a photovoltaic device, light absorption and charge carrier transport are coupled together on the mesoscale, and in a photoelectrochemical device, light absorption, charge carrier transport, catalysis, and solution species transport are all coupled together on the mesoscale. The work discussed herein demonstrates that simulation-based mesoscale optical and optoelectronic modeling can lead to detailed understanding of the operation and performance of these complex mesostructured devices, serve as a powerful tool for device optimization, and efficiently guide device design and experimental fabrication efforts. In-depth studies of two mesoscale wire-based device designs illustrate these principles—(i) an optoelectronic study of a tandem Si|WO3 microwire photoelectrochemical device, and (ii) an optical study of III-V nanowire arrays.

The study of the monolithic, tandem, Si|WO3 microwire photoelectrochemical device begins with development and validation of an optoelectronic model with experiment. This study capitalizes on synergy between experiment and simulation to demonstrate the model’s predictive power for extractable device voltage and light-limited current density. The developed model is then used to understand the limiting factors of the device and optimize its optoelectronic performance. The results of this work reveal that high fidelity modeling can facilitate unequivocal identification of limiting phenomena, such as parasitic absorption via excitation of a surface plasmon-polariton mode, and quick design optimization, achieving over a 300% enhancement in optoelectronic performance over a nominal design for this device architecture, which would be time-consuming and challenging to do via experiment.

The work on III-V nanowire arrays also starts as a collaboration of experiment and simulation aimed at gaining understanding of unprecedented, experimentally observed absorption enhancements in sparse arrays of vertically-oriented GaAs nanowires. To explain this resonant absorption in periodic arrays of high index semiconductor nanowires, a unified framework that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes is developed in the context of silicon, using both analytic theory and electromagnetic simulations. This detailed theoretical understanding is then applied to a simulation-based optimization of light absorption in sparse arrays of GaAs nanowires. Near-unity absorption in sparse, 5% fill fraction arrays is demonstrated via tapering of nanowires and multiple wire radii in a single array. Finally, experimental efforts are presented towards fabrication of the optimized array geometries. A hybrid self-catalyzed and selective area MOCVD growth method is used to establish morphology control of GaP nanowire arrays. Similarly, morphology and pattern control of nanowires is demonstrated with ICP-RIE of InP. Optical characterization of the InP nanowire arrays gives proof of principle that tapering and multiple wire radii can lead to near-unity absorption in sparse arrays of InP nanowires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Banana is one of the most consumed fruits in the world, which is grown in most tropical countries. The objective of this work was to evaluate the main attributes of soil fertility in a banana crop under two cover crops and two root development locations. The work was conducted in Curaçá, BA, Brazil, between October 2011 and May 2013, using a randomized block design in split plot with five repetitions. Two cover crops were assessed in the plots, the cover 1 consisting of Pueraria phaseoloid es, and the cover 2 consisting of a crop mix with Sorghum bicolor, Ricinus commun is L., Canavalia ensiform is, Mucuna aterrima and Zea mays, and two soil sampling locations in the subplots, between plants in the banana rows (location 1) and between the banana rows (location 2). There were significant and independent effects for the cover crop and sampling location factors for the variables organic matter, Ca and P, and significant effects for the interaction between cover crops and sampling locations for the variables potassium, magnesium and total exchangeable bases. The cover crop mix and the between-row location presented the highest organic matter content. Potassium was the nutrient with the highest negative variation from the initial content and its leaf content was below the reference value, however not reducing the crop yield. The banana crop associated with crop cover using the crop mix provided greater availability of nutrients in the soil compared to the coverage with tropical kudzu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To compare oral bioavailability and pharmacokinetic parameters of different lornoxicam formulations and to assess similarity in plasma level profiles by statistical techniques. Methods: An open-label, two-period crossover trial was followed in 24 healthy Pakistani volunteers (22 males, 2 females). Each participant received a single dose of lornoxicam controlled release (CR) microparticles and two doses (morning and evening) of conventional lornoxicam immediate release (IR) tablet formulation. The microparticles were prepared by spray drying method. The formulations were administered again in an alternate manner after a washout period of one week. Pharmacokinetic parameters were determined by Kinetica 4.0 software using plasma concentration-time data. Moreover, data were statistically analyzed at 90 % confidence interval (CI) and Schuirmann’s two one-sided t-test procedure. Results: Peak plasma concentration (Cmax) was 20.2 % lower for CR formulation compared to IR formulation (270.90 ng/ml vs 339.44 ng/ml, respectively) while time taken to attain Cmax (tmax) was 5.25 and 2.08 h, respectively. Area under the plasma drug level versus time (AUC) curve was comparable for both CR and IR formulations. The 90 % confidence interval (CI) values computed for Cmax, AUC0-24, and AUC0-∞ , after log transformation, were 87.21, 108.51 and 102.74 %, respectively, and were within predefined bioequivalence range (80 - 125 %). Conclusion: The findings suggest that CR formulation of lornoxicam did not change the overall pharmacokinetic properties of lornoxicam in terms of extent and rate of lornoxicam absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. The objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity. Linear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. Linear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error. An adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma. In order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enteric nervous system (ENS) modulates a number of digestive functions including well known ones, i.e. motility, secretion, absorption and blood flow, along with other critically relevant processes, i.e. immune responses of the gastrointestinal (GI) tract, gut microbiota and epithelial barrier . The characterization of the anatomical aspects of the ENS in large mammals and the identification of differences and similarities existing between species may represent a fundamental basis to decipher several digestive GI diseases in humans and animals. In this perspective, the aim of the present thesis is to highlight the ENS anatomical basis and pathological aspects in different mammalian species, such as horses, dogs and humans. Firstly, I designed two anatomical studies in horses:  “Excitatory and inhibitory enteric innervation of horse lower esophageal sphincter”.  “Localization of 5-hydroxytryptamine 4 receptor (5-HT4R) in the equine enteric nervous system”. Then I focused on the enteric dysfunctions, including:  A primary enteric aganglionosis in horses: “Extrinsic innervation of the ileum and pelvic flexure of foals with ileocolonic aganglionosis”.  A diabetic enteric neuropathy in dogs: “Quantification of nitrergic neurons in the myenteric plexus of gastric antrum and ileum of healthy and diabetic dogs”.  An enteric neuropathy in human neurological patients: “Functional and neurochemical abnormalities in patients with Parkinson's disease and chronic constipation”. The physiology of the GI tract is characterized by a high complexity and it is mainly dependent on the control of the intrinsic nervous system. ENS is critical to preserve body homeostasis as reflect by its derangement occurring in pathological conditions that can be lethal or seriously disabling to humans and animals. The knowledge of the anatomy and the pathology of the ENS represents a new important and fascinating topic, which deserves more attention in the veterinary medicine field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cured meats and dairy products are criticized for their salt content and synthetic additives. This has led to the development of strategies to reduce and replace these ingredients. Since the food matrix and technological processes can affect the bioaccessibility of nutrients, it is necessary to study their release during digestion to determine the real nutritional value of foods. In the first part of this PhD project, the impact on the nutritional quality of the reduction of sodium content and of the replacement of synthetic nitrates/nitrites with a combination of innovative formulations was evaluated in Parmigiano Reggiano Cheese and salami. For this purpose, an in vitro digestion model combined with different analytical techniques was used. The results showed that fatty acids and proteins release increased over time during digestion. At the end of digestion, the innovative formulation/processing did not negatively affect fatty acids release and protein hydrolysis, and led to the formation of bioactive peptides. The excessive intake of sugars is correlated with metabolic diseases. After the intestinal uptake, their release in the blood stream depends on their metabolic fate within the enterocyte. In the second part of this PhD project, the absorption and metabolism of glucose, fructose and sucrose was evaluated using intestinal cell line. A faster absorption of fructose than glucose was observed, and a different modulation of the synthesis/transport of other metabolites by monosaccharides was shown. Intestinal cells were also used to verify the stability and intestinal uptake of vitamins (A and D3) delivered to cells through two vehicles. It was shown that the presence of lipids protected the vitamin from external factors such as light, heat and oxygen, and improved their bioavailability Overall, the results obtained in this PhD project confirmed that considering only the chemical composition of foods is not sufficient to determine their nutritional value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the microtensile bond strength (µTBS) of two substrates (enamel and dentin) considering two study factors: type of composite resin [methacrylate-based (Filtek Supreme) or silorane-based (Filtek LS)] and aging time (24 h or 3 months). Twenty human molars were selected and divided into 2 groups (n=10) considering two dental substrates, enamel or dentin. The enamel and dentin of each tooth was divided into two halves separated by a glass plate. Each tooth was restored using both tested composite resins following the manufacturer's instructions. The samples were sectioned, producing 4 sticks for each composite resin. Half of them were tested after 24 h and half after 3 months. µTBS testing was carried out at 0.05 mm/s. Data were analyzed by three-way ANOVA and Tukey's HSD tests at α=0.05. Significant differences between composite resins and substrates were found (p<0.05), but no statistically significant difference was found for aging time and interactions among study factors. The methacrylate-based resin showed higher µTBS than the silorane-based resin. The µTBS for enamel was significantly higher than for dentin, irrespective of the composite resin and storage time. Three months of storage was not sufficient time to cause degradation of the bonding interaction of either of the composite resins to enamel and dentin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to evaluate the frequency and severity of nausea and vomiting using two different instruments and relate them to quality of life (QOL) in patients with cancer receiving antineoplastic treatment. Severity of chemotherapy-induced nausea and vomiting (CINV) was measured by Common Terminology Criteria for Adverse Events (CTCAE) and a numerical scale. QOL was assessed using the Functional Assessment of Cancer Therapy-General questionnaire. Of the 50 patients studied, 60.0% reported nausea (40.0% CTCAE grade 1; 66.7% moderate intensity on numerical scale) and 30.0% reported vomiting (46.7% CTCAE grades 1 and 2, each; 66.7% moderate intensity on numerical scale). CINV did not influence overall QOL. The frequency of CINV was high. There was no association between nausea/vomiting and overall QOL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the dentine bond strength (BS) and the antibacterial activity (AA) of six adhesives against strict anaerobic and facultative bacteria. Three adhesives containing antibacterial components (Gluma 2Bond (glutaraldehyde)/G2B, Clearfil SE Protect (MDPB)/CSP and Peak Universal Bond (PUB)/chlorhexidine) and the same adhesive versions without antibacterial agents (Gluma Comfort Bond/GCB, Clearfil SE Bond/CSB and Peak LC Bond/PLB) were tested. The AA of adhesives and control groups was evaluated by direct contact method against four strict anaerobic and four facultative bacteria. After incubation, according to the appropriate periods of time for each microorganism, the time to kill microorganisms was measured. For BS, the adhesives were applied according to manufacturers' recommendations and teeth restored with composite. Teeth (n=10) were sectioned to obtain bonded beams specimens, which were tested after artificial saliva storage for one week and one year. BS data were analyzed using two-way ANOVA and Tukey test. Saliva storage for one year reduces the BS only for GCB. In general G2B and GCB required at least 24h for killing microorganisms. PUB and PLB killed only strict anaerobic microorganisms after 24h. For CSP the average time to eliminate the Streptococcus mutans and strict anaerobic oral pathogens was 30min. CSB showed no AA against facultative bacteria, but had AA against some strict anaerobic microorganisms. Storage time had no effect on the BS for most of the adhesives. The time required to kill bacteria depended on the type of adhesive and never was less than 10min. Most of the adhesives showed stable bond strength after one year and the Clearfil SE Protect may be a good alternative in restorative procedures performed on dentine, considering its adequate bond strength and better antibacterial activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friction coefficient (FC) was quantified between titanium-titanium (Ti-Ti) and titanium-zirconia (Ti-Zr), materials commonly used as abutment and implants, in the presence of a multispecies biofilm (Bf) or salivary pellicle (Pel). Furthermore, FC was used as a parameter to evaluate the biomechanical behavior of a single implant-supported restoration. Interface between Ti-Ti and Ti-Zr without Pel or Bf was used as control (Ctrl). FC was recorded using tribometer and analyzed by two-way Anova and Tukey test (p<0.05). Data were transposed to a finite element model of a dental implant-supported restoration. Models were obtained varying abutment material (Ti and Zr) and FCs recorded (Bf, Pel, and Ctrl). Maximum and shear stress were calculated for bone and equivalent von Misses for prosthetic components. Data were analyzed using two-way ANOVA (p<0.05) and percentage of contribution for each condition (material and FC) was calculated. FC significant differences were observed between Ti-Ti and Ti-Zr for Ctrl and Bf groups, with lower values for Ti-Zr (p<0.05). Within each material group, Ti-Ti differed between all treatments (p<0.05) and for Ti-Zr, only Pel showed higher values compared with Ctrl and Bf (p<0.05). FC contributed to 89.83% (p<0.05) of the stress in the screw, decreasing the stress when the FC was lower. FC resulted in an increase of 59.78% of maximum stress in cortical bone (p=0.05). It can be concluded that the shift of the FC due to the presence of Pel or Bf is able to jeopardize the biomechanical behavior of a single implant-supported restoration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To compare intraocular pressure (IOP) rise in normal individuals and primary open-angle glaucoma patients and the safety and efficacy of ibopamine eye drops in different concentrations as a provocative test for glaucoma. METHODS: Glaucoma patients underwent (same eye) the ibopamine provocative test with two concentrations, 1% and 2%, in a random sequence at least 3 weeks apart, but not more than 3 months. The normal individuals were randomly submitted to one of the concentrations of ibopamine (1% and 2%). The test was considered positive if there was an IOP rise greater than 3 or 4 mmHg at 30 or 45 minutes to test which subset of the test has the best sensitivity (Se)/specificity (Sp). RESULTS: There was no statistically significant difference in any of the IOP measurements, comparing 1% with 2% ibopamine. The IOP was significantly higher at 30 and 45 minutes with both concentrations (p<0.001). The best sensitivity/specificity ratio was achieved with the cutoff point set as greater than 3 mmHg at 45 minutes with 2% ibopamine (area under the ROC curve: 0.864, Se: 84.6%; Sp:73.3%). All patients described a slight burning after ibopamine's instillation. CONCLUSION: 2% ibopamine is recommended as a provocative test for glaucoma. Because both concentrations have similar ability to rise IOP, 1% ibopamine may be used to treat ocular hypotony.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.