910 resultados para Tumor-growth
Resumo:
The overexpression of epidermal growth factor receptor (EGFr) has been implicated as a causative factor and a poor prognostic marker in a number of carcinomas. Therefore, strategies that down-regulate EGFr expression may be therapeutically useful. We designed antisense ODNs complementary to the initiation codon region of the EGFr mRNA and evaluated their efficacy in several tumor-derived cells, including the A431 cell line that express amplified levels of EGFr. A 15-mer phosphorothioate (PS) antisense ODN (erbB1AS15) induced a concentration-dependent reduction in proliferation that was accompanied by a change in the morphology of A431 cells into more tightly clustered and discrete colonies. A 15-mer sense (PS) control oligodeoxynucleotide (ODN) and a phosphodiester (PO) version of erbB1AS15 had little or no effect on cell number of morphology, and erbB1AS15 (PS) did not induce these effects in control cell lines expressing lower levels of EGFr. The effects of erbB1AS15 (PS) on A431 cells were not mediated by a true antisense mechanism in that there was no reduction in the level of EGFr mRNA or protein over a 24-hr period, as determined by Northern and Western blotting, respectively. However, autophosphorylation of the receptor was significantly reduced by erbB1AS15 (PS) and not by control ODNs. The results of further studies suggested that this effect was mediated by a direct, dose-dependent inhibition of the EGFr tyrosine kinase enzyme and was not due to impairment of either ligand-binding or receptor dimerization. These data suggest that erbB1AS15 (PS) can inhibit proliferation and alter the morphology of A431 cells by a sequence-selective, but nonantisense mechanism affecting receptor tyrosine kinase activity.
Resumo:
A number of malignant tumors interact with the host to cause a syndrome of cachexia, characterized by extensive loss of adipose tissue and skeletal muscle mass, but with preservation of proteins in visceral tissues. Although anorexia is frequently present, the body composition changes in cancer cachexia cannot be explained by nutritional deprivation alone. Loss of skeletal muscle mass is a result of depression in protein synthesis and an increase in protein degradation. The main degradative pathway that has been found to have increased expression and activity in the skeletal muscle of cachectic patients is the ubiquitin-proteasome proteolytic pathway. Cachexia-inducing tumors produce catabolic factors such as proteolysis-inducing factor (PIF), a 24 kDa sulfated glycoprotein, which inhibit protein synthesis and stimulate degradation of intracellular proteins in skeletal muscle by inducing an increased expression of regulatory components of the ubiquitin-proteasome proteolytic pathway. While the oligosaccharide chains in PIF are required to initiate protein degradation the central polypeptide core may act as a growth and survival factor. Only cachexia-inducing tumors are capable of elaborating fully glycosylated PIF, and the selectivity of production possibly rests with the acquisition of the necessary glycosylating enzymes, rather than expressing the gene for the polypeptide core. Loss of adipose tissue is probably the result of an increase in catabolism rather than a defect in anabolism. A lipid mobilizing factor (LMF), identical with the plasma protein Zn-α2-glycoprotein (ZAG) is found in the urine of cachectic cancer patients and is produced by tumors causing a decrease in carcass lipid. LMF causes triglyceride hydrolysis in adipose tissue through a cyclic AMP-mediated process by interaction with a β3-adrenoreceptor. Thus, by producing circulating factors certain malignant tumors are able to interfere with host metabolism even without metastasis to that particular site. © 2004 Wiley-Liss, Inc.
Resumo:
The MAC16 tumour produces a factor which exhibits lipid-mobilizing activity in vitro in addition to causing extensive depletion of host lipid stores. The mechanism of the anti-lipolytic effect of two anti-cachectic agents, eicosapentaenoic acid, an ω-3 polyunsaturated fatty acid (PUFA), and N-(3-phenoxycinnamyl)acetohydroxamic acid (BW A4C), a 5-lipoxygenase inhibitor, has been investigated. These two agents reduce tumour growth and reverse the weight loss which accompanies transplantation of the MAC16 murine colon adenocarcinoma into NMRI mice. Mice transplanted with the MAC16 tumour exhibited weight loss which was directly proportional to the serum lipolytic activity measured in vitro up to a weight loss corresponding to 16% of the original body weight. After this time, an inverse relationship between weight loss and lipolytic activity was observed. Body composition analysis revealed a large decrease in body fat relative to other body compartments. The anti-tumour/anti-cachectic effect of EPA did not appear to be due to its ability to inhibit the production of prostaglandin E2. The MAC16 lipolytic factor increased adenylate cyclase activity in adipocyte plasma membranes in a concentration-dependent manner. EPA inhibited the production of cAMP attributed to this lipid-mobilizing factor. EPA produced alterations in Gi , the guanine nucleotide binding protein which mediates hormonal inhibition of adenylate cyclase, in addition to altering cAMP production in adipocyte plasma membranes in response to hormonal stimulation. The alterations in adenylate cyclase activity were complex and not specific to EPA. EPA stimulated adenylate cyclase activity when in a relatively high fatty acid : membrane ratio and inhibited activity when this ratio was lowered. The inhibitory effect of EPA on adenylate cyclase activity may be the underlying mechanism which explains its anti-lipolytic and anti-cachectic effect. The inability of the related ω-3 PUFA, docosahexaenoic acid (DHA), to inhibit cachexia may be due to a difference in the metabolic fates of these two fatty acids. BW A4C inhibited lipolysis in isolated adipocytes which suggests that this compound may possess the potential for an anti-cachectic effect which is independent of its inhibitory effect on tumour growth.
Resumo:
The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types. © 2012 Cartwright et al.
Resumo:
Preeclampsia is an inflammatory disorder in which serum levels of vascular endothelial growth factor (VEGF) and its soluble receptor-1 (sVEGFR-1, also known as sFlt-1) are elevated. We hypothesize that VEGF and placenta growth factor (PlGF) are dysregulated in preeclampsia due to high levels of sVEGFR-1, which leads to impaired placental angiogenesis. Analysis of supernatants taken from preeclamptic placental villous explants showed a four-fold increase in sVEGFR-1 than normal pregnancies, suggesting that villous explants in vitro retain a hypoxia memory reflecting long-term fetal programming. The relative ratios of VEGF to sVEGFR-1and PlGF to sVEGFR-1 released from explants decreased by 53% and 70%, respectively, in preeclampsia compared with normal pregnancies. Exposure of normal villous explants to hypoxia increased sVEGFR-1 release compared with tissue normoxia (P<0.001), as did stimulation with tumor necrosis factor-α (P<0.01). Conditioned medium (CM) from normal villous explants induced endothelial cell migration and in vitro tube formation, which were both attenuated by pre-incubation with exogenous sVEGFR-1 (P<0.001). In contrast, endothelial cells treated with preeclamptic CM showed substantially reduced angiogenesis compared withnormal CM (P<0.001), which was not further decreased by the addition of exogenous sVEGFR-1, indicating a saturation of the soluble receptor.Removal of sVEGFR-1 by immunoprecipitation from preeclamptic CM significantly restored migration (P<0.001) and tube formation (P<0.001) to levels comparable to that induced by normal CM, demonstrating that elevated levels of sVEGFR-1 in preeclampsia are responsible for inhibiting angiogenesis. Our finding demonstrates the dysregulation of the VEGF/PlGF axis in preeclampsiaand offers an entirely new therapeutic approach to its treatment.
Resumo:
The purpose of this study was to investigate the effects of 17-β-estradiol (E2)-induced reactive oxygen species (ROS) on the induction of mammary tumorigenesis. We found that ROS-induced by repeated exposures to 4-hydroxy-estradiol (4-OH-E2), a predominant catechol metabolite of E2, caused transformation of normal human mammary epithelial MCF-10A cells with malignant growth in nude mice. This was evident from inhibition of estrogen-induced breast tumor formation in the xenograft model by both overexpression of catalase as well as by co-treatment with Ebselen. To understand how 4-OH-E2 induces this malignant phenotype through ROS, we investigated the effects of 4-OH-E2 on redox-sensitive signal transduction pathways. During the malignant transformation process we observed that 4-OH-E2 treatment increased AKT phosphorylation through PI3K activation. The PI3K-mediated phosphorylation of AKT in 4-OH-E2-treated cells was inhibited by ROS modifiers as well as by silencing of AKT expression. RNA interference of AKT markedly inhibited 4-OH-E2-induced in vitro tumor formation. The expression of cell cycle genes, cdc2, PRC1 and PCNA and one of transcription factors that control the expression of these genes – nuclear respiratory factor-1 (NRF-1) was significantly up-regulated during the 4-OH-E2-mediated malignant transformation process. The increased expression of these genes was inhibited by ROS modifiers as well as by silencing of AKT expression. These results indicate that 4-OH-E2-induced cell transformation may be mediated, in part, through redox-sensitive AKT signal transduction pathways by up-regulating the expression of cell cycle genes cdc2, PRC1 and PCNA, and the transcription factor – NRF-1. In summary, our study has demonstrated that: (i) 4-OH-E2 is one of the main estrogen metabolites that induce mammary tumorigenesis and (ii) ROS-mediated signaling leading to the activation of PI3K/AKT pathway plays an important role in the generation of 4-OH-E2-induced malignant phenotype of breast epithelial cells. In conclusion, ROS are important signaling molecules in the development of estrogen-induced malignant breast lesions.
Resumo:
Skin cancer is the most common form of cancer in the United States. Melanoma is a particular type of skin cancer, which arises from the malignant transformation of melanocytes and generally exhibits a high propensity to metastasize. Melanoma progression is dependent on angiogenesis to deliver the oxygen and nutrients required to maintain the altered metabolism of rapidly proliferating tumorigenic cells. Recent studies have implicated the growth factor Endothelin 3 (Edn3) in melanoma progression and metastasis. The aim of this study was to examine the role that Edn3 plays in the angiogenesis of melanocytic lesions. For this purpose, Dct-Grm1 transgenic mice, which spontaneously acquire melanocytic lesions through the aberrant expression of the metabotropic glutamate receptor 1 (mGluR1), were crossed with K5-Edn3 transgenic mice that overexpress Edn3. Tumors in the Dct-Grm1/K5-Edn3 experimental population were examined and compared to the control Dct-Grm1 population using immuno-fluorescent staining targeted against the vascular endothelial cell marker CD31. Proteomic arrays were also used and identified changes in the expression of specific angiogenic factors. CD31 antibody staining results revealed an increased vascular density in Dct-Grm1/K5-Edn3 tumors compared with tumors from the Dct-Grm1 controls. Analysis of the relative expression of angiogenic proteins showed an upregulation of various vascular factors in tumors from the Dct-Grm1/K5-Edn3 population, including VEGF-B, MMP-8, MMP-9, and Angiogenin. These results suggest that endothelin signaling promotes angiogenesis in melanocytic lesions. Targeting the factors upregulated by Edn3 signaling may prove effective in hindering melanoma progression.
Resumo:
Inflammatory breast cancer (IBC) is an extremely rare but highly aggressive form of breast cancer characterized by the rapid development of therapeutic resistance leading to particularly poor survival. Our previous work focused on the elucidation of factors that mediate therapeutic resistance in IBC and identified increased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein (XIAP), to correlate with the development of resistance to chemotherapeutics. Although XIAP is classically thought of as an inhibitor of caspase activation, multiple studies have revealed that XIAP can also function as a signaling intermediate in numerous pathways. Based on preliminary evidence revealing high expression of XIAP in pre-treatment IBC cells rather than only subsequent to the development of resistance, we hypothesized that XIAP could play an important signaling role in IBC pathobiology outside of its heavily published apoptotic inhibition function. Further, based on our discovery of inhibition of chemotherapeutic efficacy, we postulated that XIAP overexpression might also play a role in resistance to other forms of therapy, such as immunotherapy. Finally, we posited that targeting of specific redox adaptive mechanisms, which are observed to be a significant barrier to successful treatment of IBC, could overcome therapeutic resistance and enhance the efficacy of chemo-, radio-, and immuno- therapies. To address these hypotheses our objectives were: 1. to determine a role for XIAP in IBC pathobiology and to elucidate the upstream regulators and downstream effectors of XIAP; 2. to evaluate and describe a role for XIAP in the inhibition of immunotherapy; and 3. to develop and characterize novel redox modulatory strategies that target identified mechanisms to prevent or reverse therapeutic resistance.
Using various genomic and proteomic approaches, combined with analysis of cellular viability, proliferation, and growth parameters both in vitro and in vivo, we demonstrate that XIAP plays a central role in both IBC pathobiology in a manner mostly independent of its role as a caspase-binding protein. Modulation of XIAP expression in cells derived from patients prior to any therapeutic intervention significantly altered key aspects IBC biology including, but not limited to: IBC-specific gene signatures; the tumorigenic capacity of tumor cells; and the metastatic phenotype of IBC, all of which are revealed to functionally hinge on XIAP-mediated NFκB activation, a robust molecular determinant of IBC. Identification of the mechanism of XIAP-mediated NFκB activation led to the characterization of novel peptide-based antagonist which was further used to identify that increased NFκB activation was responsible for redox adaptation previously observed in therapy-resistant IBC cells. Lastly, we describe the targeting of this XIAP-NFκB-ROS axis using a novel redox modulatory strategy both in vitro and in vivo. Together, the data presented here characterize a novel and crucial role for XIAP both in therapeutic resistance and the pathobiology of IBC; these results confirm our previous work in acquired therapeutic resistance and establish the feasibility of targeting XIAP-NFκB and the redox adaptive phenotype of IBC as a means to enhance survival of patients.
Resumo:
Inflammatory breast cancer (IBC) is the deadliest, distinct subtype of breast cancer. High expression of epidermal growth factor receptors [EGFR or human epidermal growth factor receptor 2 (HER2)] in IBC tumors has prompted trials of anti-EGFR/HER2 monoclonal antibodies to inhibit oncogenic signaling; however, de novo and acquired therapeutic resistance is common. Another critical function of these antibodies is to mediate antibody-dependent cellular cytotoxicity (ADCC), which enables immune effector cells to engage tumors and deliver granzymes, activating executioner caspases. We hypothesized that high expression of anti-apoptotic molecules in tumors would render them resistant to ADCC. Herein, we demonstrate that the most potent caspase inhibitor, X-linked inhibitor of apoptosis protein (XIAP), overexpressed in IBC, drives resistance to ADCC mediated by cetuximab (anti-EGFR) and trastuzumab (anti-HER2). Overexpression of XIAP in parental IBC cell lines enhances resistance to ADCC; conversely, targeted downregulation of XIAP in ADCC-resistant IBC cells renders them sensitive. As hypothesized, this ADCC resistance is in part a result of the ability of XIAP to inhibit caspase activity; however, we also unexpectedly found that resistance was dependent on XIAP-mediated, caspase-independent suppression of reactive oxygen species (ROS) accumulation, which otherwise occurs during ADCC. Transcriptome analysis supported these observations by revealing modulation of genes involved in immunosuppression and oxidative stress response in XIAP-overexpressing, ADCC-resistant cells. We conclude that XIAP is a critical modulator of ADCC responsiveness, operating through both caspase-dependent and -independent mechanisms. These results suggest that strategies targeting the effects of XIAP on caspase activation and ROS suppression have the potential to enhance the activity of monoclonal antibody-based immunotherapy.
Resumo:
Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma.
Resumo:
The p16 gene competes with cyclin D for binding to CDK4/CDK6 and therefore inhibits CDK4/6 complex kinase activity, resulting in dephosphorylation of pRb and related G1 growth arrest. Inactivation of this gene has been involved in a variety of tumors by different mechanisms: homozygous/hemyzygous deletions, point mutations and methylation of a 5' CpG island into exon E1alpha of the p16 gene. Homozygous deletions have been rarely found in multiple myeloma (MM) and no point mutations have been reported. Two recent studies have reported a high prevalence of methylation in the exon E1alpha of the p16 gene, but included only a small number of cases. We have analyzed the methylation pattern of exon E1alpha of the p16 gene in 101 untreated MM and five primary plasma cell leukemias (PCL). A PCR assay, relying on the inability of some restriction enzymes to digest methylated sequences, was used to analyze the methylation status. Southern blot analysis was used to confirm these results. Forty-one of 101 MM patients (40.5%) as well as four of the five (80%) primary PCL patients had shown methylation of the exon E1alpha. Our study confirms that hypermethylation of the p16 gene is a frequent event in MM. Leukemia (2000) 14, 183-187.
Resumo:
Prostate cancer (PCa) is the most common non-cutaneous malignant disease among males in the developed countries. Radical prostatectomy (RP) is an effective therapy for most PCa patients with localized or locally invaded tumors but in some cases the cancer recurs after RP. PCa is a heterogeneous disease, which is regulated by many factors, such as androgen receptor (AR), estrogen receptors and (ER and ER), fibroblast growth factors (FGFs) and their receptors (FGFRs). In this study, the role of ERβ, FGF8, FGF13 and FGFRL1 was investigated in PCa. Previous studies have suggested that ER is protective against PCa whereas FGF8 has been shown to induce PCa in transgenic mice. FGF13 and FGFRL1 are poorly understood members of the FGF and FGFR families, respectively. Transgenic mouse models were used to investigate the ability of inactivated ERβ to facilitate FGF8-induced prostate tumorigenesis. Human PCa tissue microarrays (TMAs) were used to study the expression pattern of FGF13 and FGFRL1 in PCa and the results were correlated to corresponding patient data. The targets and biological functions of FGF13 and FGFRL1 were characterized using experimental in vivo and in vitro models. The results show that deficiency of ERβ, which had been expected to have tumor suppressing capacity, seemed to influence epithelial differentiation but did not affect FGF8-induced prostate tumorigenesis. Analysis of the TMAs showed increased expression of FGF13 in PCa. The level of cytoplasmic FGF13 was associated with the PCa biochemical recurrence (BCR), demonstrated by increasing serum PSA value, and was able to act as an independent prognostic biomarker for PCa patients after RP. Expression of FGFRL1, the most recently identified FGFR, was also elevated in PCa. Cytoplasmic and nuclear FGFRL1 was associated with high Gleason score and Ki67 level whereas the opposite was true for the cell membrane FGFRL1. Silencing of FGFRL1 in PC-3M cells led to a strongly decreased growth rate of these cells as xenografts in nude mice and the experiments with PCa cell lines showed that FGFRL1 is able to modulate the FGF2- and FGF8-induced signaling pathways. The next generation sequencing (NGS) experiments with FGFRL1-silenced PC-3M cells revealed candidates for FGFRL1 target genes. In summary, these studies provide new data on the FGF/FGFR signaling pathways in normal and malignant prostate and suggest a potential role for FGF13 and FGFRL1 as novel prognostic markers for PCa patients. Keywords: FGF8, FGF13, FGFRL1, ERβ, prostate cancer, prognostic marker
Resumo:
Introduction. Intravascular papillary endothelial hyperplasia (Masson's hemangioma or Masson’s tumor) is a benign vascular disease with an exuberant endothelial proliferation in normal blood vessels. Although relatively uncommon, its correct diagnosis is important because it can clinically be like both benign lesions and malignant neoplasms. We present a case of intravascular proliferative endothelial hyperplasia simulating a tendon cyst both clinically and on ultrasound. Case report. A 74-year old Caucasian female presented with a 4-month history of soreness and swelling in the fourth finger of the right hand. Ultrasound showed an oval mass with fluid content, referred to a tendon cyst. A wide surgical excision was subsequently performed. The final histological diagnosis was Masson’s tumor. Discussion. The pathogenesis of intravascular papillary endothelial hyperplasia is still unclear but the exuberant endothelial cell proliferation might be stimulated by an autocrine loop of endothelial basic fibroblast growth factor (bFGF) secretion. There are three types of papillary endothelial hyperplasia: primary, or intravascular; secondary, or mixed; and extravascular. The main differential diagnosis is against pyogenic granuloma, Kaposi sarcoma, hemangioma, and angiosarcoma. Conclusions. Masson's tumor can be like both benign lesions and malignant neoplasms clinically and on ultrasound. For this reason, the right diagnosis can be made only by histology, which reveals a papillary growth composed of hyperplastic endothelial cells supported by delicate fibrous stalks entirely confined within the vascular lumen.
Resumo:
Introduction. The IGF system has recently been shown to play an important role in the regulation of breast tumor cell proliferation. However, also breast density is currently considered as the strongest breast cancer risk factor. It is not yet clear whether these factors are interrelated and if and how they are influenced by menopausal status. The purpose of this study was to examine the possible effects of IGF-1 and IGFBP-3 and IGF-1/IGFBP-3 molar ratio on mammographic density stratified by menopausal status. Patients and methods. A group of 341 Italian women were interviewed to collect the following data: family history of breast cancer, reproductive and menstrual factors, breast biopsies, previous administration of hormonal contraceptive therapy, hormone replacement therapy (HRT) in menopause and lifestyle information. A blood sample was drawn for determination of IGF-1, IGFBP-3 levels. IGF-1/ IGFBP-3 molar ratio was then calculated. On the basis of recent mammograms the women were divided into two groups: dense breast (DB) and non-dense breast (NDB). Student’s t-test was employed to assess the association between breast density and plasma level of IGF-1, IGFBP-3 and molar ratio. To assess if this relationship was similar in subgroups of pre- and postmenopausal women, the study population was stratified by menopausal status and Student’s t-test was performed. Finally, multivariate analysis was employed to evaluate if there were confounding factors that might influence the relationship between growth factors and breast density. Results. The analysis of the relationship between mammographic density and plasma level of IGF-1, IGFBP-3 and IGF-1/ IGFBP-3 molar ratio showed that IGF-1 levels and molar ratio varied in the two groups resulting in higher mean values in the DB group (IGF-1: 109.6 versus 96.6 ng/ml; p= 0.001 and molar ratio 29.4 versus 25.5 ng/ml; p= 0.001) whereas IGFBP-3 showed similar values in both groups (DB and NDB). Analysis of plasma level of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio compared to breast density after stratification of the study population by menopausal status (premenopausal and postmenopausal) showed that there was no association between the plasma of growth factors and breast density, neither in premenopausal nor in postmenopausal patients. Multivariate analysis showed that only nulliparity, premenopausal status and body mass index (BMI) are determinants of breast density. Conclusions. Our study provides a strong evidence of a crude association between breast density and plasma levels of IGF-1 and molar ratio. On the basis of our results, it is reasonable to assume that the role of IGF-1 and molar ratio in the pathogenesis of breast cancer might be mediated through mammographic density. IGF-1 and molar ratio might thus increase the risk of cancer by increasing mammographic density.
Resumo:
International audience