995 resultados para Treitschke, Heinrich vonTreitschke, Heinrich vonHeinrichTreitschkevonasn28.04.1896
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
There are controversies regarding the origin of Heinrich layer 3 (H3), the massive ice-rafting and meltwater event in the North Atlantic during the last glacial cycle spanning a time window between 29 and 30 kyr B.P. Some argue in favor of a Laurentide Ice Sheet source similar to other Heinrich layers, while a contending view argues for the European ice sheet source. Existing geochemical proxies such as 40Ar/39Ar, 206Pb/204Pb, or epsilon-Nd, etc., could not be used to distinguish among various sources of ice-rafted debris in H3 because of their low abundances, suggesting a background glacial sediment signal. In order to circumvent this problem a biomarker-based approach is used to characterize the provenance of H layers 2, 3, and 4 and other non-Heinrich layers. The presence of hopanes and steranes and their aromatic counterparts in the H layers is incompatible with Recent sediments and is attributed to the transportation of organic matter because of the glacial erosion of source rocks. The most diagnostic and useful signatures of this ancient organic matter in the H layers are the dominance of C34 hopanoids over C33 and the occurrence of isorenieratane along with palaerenieratane. Biomarkers signatures in H layers 2 and 3 of the Labrador Sea suggest no difference in their source. Hydrocarbon distributions suggest that these sediments were derived from the Middle to Late Ordovician and Silurian source rocks of the Hudson Bay of eastern Canada. Biomarker data of the H layer 4 from the northwest Atlantic reveal that the sediments of this layer have a similar source to the H layers in the Labrador Sea.
Resumo:
We report oxygen and carbon isotope results of detrital carbonate grains from Heinrich layers at three sites in the North Atlantic located along a transect from the Labrador Sea to the eastern North Atlantic. Oxygen isotopic values of individual detrital carbonate grains from six Heinrich layers at all sites average - 5.6 ppm ± 1.5 ppm (1sigma; n = 166), reflecting values of dolomitic limestone derived from source areas in northeastern Canada. The d18O of bulk carbonate at Integrated Ocean Drilling Program (IODP) Site U1308 (re-occupation of Deep Sea Drilling Project (DSDP) Site 609) in the eastern North Atlantic records the proportion of detrital to biogenic carbonate and d18O decreases to - 5 ppm during Heinrich (H) events 1, 2, 4 and 5 relative to a background value of ~ 1 to 2 ppm for biogenic carbonate. Bulk d18O also decreases during H3 and H6 but only attains values of - 1ppm, indicating either a greater proportion of biogenic-to-detrital carbonate or a different source. Because the d18O of detrital carbonate is ~ 9 ppm lower than foraminifer carbonate, any fine-grained detrital carbonate not removed from the inner test chambers will lower foraminifer d18O. We conclude bulk carbonate d18O is a sensitive proxy for detrital carbonate and may be useful for identifying Heinrich layers in cores within and near the margins of the North Atlantic ice-rafted detritus (IRD) belt.
Resumo:
Skutterudites Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were synthesized by induction melting at 1273 K, followed by annealing at 923 K for 144 h. X-ray powder diffraction and electron microprobe analysis confirmed the presence of the skutterudite phase as the main phase. The temperature-dependent transport properties were measured for all the samples from 300 to 818 K. A positive Seebeck coefficient (holes are majority carriers) was obtained in Fe0.2Co3.8Sb 12 in the whole temperature range. Thermally excited carriers changed from n-type to p-type in Fe(0.)2Co(3.8)Sb(12),Te-x 19Te0.1 at 570 K, while in all the other samples, Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0.2, 0.3, 0.4, 0.5, 0.6) exhibited negative Seebeck coefficients in the entire temperature range measured. Whereas for the alloys up to x = 0.2 (Fe(0.)2Co(3.8)Sb(12),Te-x ) the electrical resistivity decreased by charge compensation, it increased for x> 0.2 with an increase in Te content as a result of an increase in the electron concentration. The thermal conductivity decreased with Te substitution owing to carrier phonon scattering and point defect scattering. The maximum dimensionless thermoelectric figure of merit, ZT = 1.04 at 818 K, was obtained with an optimized Te content for Fe0.2Co3.8Sb1 1.5Te0.5 and a carrier concentration of,,J1/ =- 3.0 x 1020 CM-3 at room temperature. Thermal expansion (a = 8.8 x 10-6 K-1), as measured for Fe(0.)2Co(3.8)Sb(12),Te-x , compared well with that of undoped Co4Sb12. A further increase in the thermoelectric figure of merit up to ZT = 1.3 at 820 K was achieved for Fe(0.)2Co(3.8)Sb(12),Te-x , applying severe plastic deformation in terms of a high-pressure torsion process. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
2008