943 resultados para Travel time prediction
Resumo:
Globally on-shore wind power has seen considerable growth in all grid systems. In the coming decade off-shore wind power is also expected to expand rapidly. Wind power is variable and intermittent over various time scales because it is weather dependent. Therefore wind power integration into traditional grids needs additional power system and electricity market planning and management for system balancing. This extra system balancing means that there is additional system costs associated with wind power assimilation. Wind power forecasting and prediction methods are used by system operators to plan unit commitment, scheduling and dispatch and by electricity traders and wind farm owners to maximize profit. Accurate wind power forecasting and prediction has numerous challenges. This paper presents a study of the existing and possible future methods used in wind power forecasting and prediction for both on-shore and off-shore wind farms.
Resumo:
Conditional branches frequently exhibit similar behavior (bias, time-varying behavior,...), a property that can be used to improve branch prediction accuracy. Branch clustering constructs groups or clusters of branches with similar behavior and applies different branch prediction techniques to each branch cluster. We revisit the topic of branch clustering with the aim of generalizing branch clustering. We investigate several methods to measure cluster information, with the most effective the storage of information in the branch target buffer. Also, we investigate alternative methods of using the branch cluster identification in the branch predictor. By these improvements we arrive at a branch clustering technique that obtains higher accuracy than previous approaches presented in the literature for the gshare predictor. Furthermore, we evaluate our branch clustering technique in a wide range of predictors to show the general applicability of the method. Branch clustering improves the accuracy of the local history (PAg) predictor, the path-based perceptron and the PPM-like predictor, one of the 2004 CBP finalists.
Resumo:
The need to account for the effect of design decisions on manufacture and the impact of manufacturing cost on the life cycle cost of any product are well established. In this context, digital design and manufacturing solutions have to be further developed to facilitate and automate the integration of cost as one of the major driver in the product life cycle management. This article is to present an integration methodology for implementing cost estimation capability within a digital manufacturing environment. A digital manufacturing structure of knowledge databases are set out and the ontology of assembly and part costing that is consistent with the structure is provided. Although the methodology is currently used for recurring cost prediction, it can be well applied to other functional developments, such as process planning. A prototype tool is developed to integrate both assembly time cost and parts manufacturing costs within the same digital environment. An industrial example is used to validate this approach.
Resumo:
The aim of this study was to compare time-domain waveform analysis of second-trimester uterine artery Doppler using the resistance index (RI) with waveform analysis using a mathematical tool known as wavelet transform for the prediction of pre-eclampsia (PE). This was a retrospective, nested case-cohort study of 336 women, 37 of whom subsequently developed PE. Uterine artery Doppler waveforms were analysed using both RI and waveform analysis. The utility of these indices in screening for PE was then evaluated using receiver operating characteristic curves. There were significant differences in uterine artery RI between the PE women and those with normal pregnancy outcome. After wavelet analysis, significant difference in the mean amplitude in wavelet frequency band 4 was noted between the 2 groups. The sensitivity for both Doppler RI and frequency band 4 for the detection of PE at a 10% false-positive rate was 45%. This small study demonstrates the application of wavelet transform analysis of uterine artery Doppler waveforms in screening for PE. Further prospective studies are needed in order to clearly define if this analytical approach to waveform analysis may have the potential to improve the detection of PE by uterine artery Doppler screening.
Resumo:
OBJECTIVE To assess the association between circulating angiogenic and antiangiogenic factors in the second trimester and risk of preeclampsia in women with type 1 diabetes.
RESEARCH DESIGN AND METHODS Maternal plasma concentrations of placental growth factor (PlGF), soluble fms-like tyrosine kinase 1 (sFlt-1), and soluble endoglin (sEng) were available at 26 weeks of gestation in 540 women with type 1 diabetes enrolled in the Diabetes and Preeclampsia Intervention Trial.
RESULTS Preeclampsia developed in 17% of pregnancies (n = 94). At 26 weeks of gestation, women in whom preeclampsia developed later had significantly lower PlGF (median [interquartile range]: 231 pg/mL [120–423] vs. 365 pg/mL [237–582]; P < 0.001), higher sFlt-1 (1,522 pg/mL [1,108–3,393] vs. 1,193 pg/mL [844–1,630] P < 0.001), and higher sEng (6.2 ng/mL [4.9–7.9] vs. 5.1 ng/mL[(4.3–6.2]; P < 0.001) compared with women who did not have preeclampsia. In addition, the ratio of PlGF to sEng was significantly lower (40 [17–71] vs. 71 [44–114]; P < 0.001) and the ratio of sFlt-1 to PlGF was significantly higher (6.3 [3.4–15.7] vs. 3.1 [1.8–5.8]; P < 0.001) in women who later developed preeclampsia. The addition of the ratio of PlGF to sEng or the ratio of sFlt-1 to PlGF to a logistic model containing established risk factors (area under the curve [AUC], 0.813) significantly improved the predictive value (AUC, 0.850 and 0.846, respectively; P < 0.01) and significantly improved reclassification according to the integrated discrimination improvement index (IDI) (IDI scores 0.086 and 0.065, respectively; P < 0.001).
CONCLUSIONS These data suggest that angiogenic and antiangiogenic factors measured during the second trimester are predictive of preeclampsia in women with type 1 diabetes. The addition of the ratio of PlGF to sEng or the ratio of sFlt-1 to PlGF to established clinical risk factors significantly improves the prediction of preeclampsia in women with type 1 diabetes.
Preeclampsia is characterized by the development of hypertension and new-onset proteinuria during the second half of pregnancy (1,2), leading to increased maternal morbidity and mortality (3). Women with type 1 diabetes are at increased risk for development of preeclampsia during pregnancy, with rates being two-times to four-times higher than that of the background maternity population (4,5). Small advances have come from preventive measures, such as low-dose aspirin in women at high risk (6); however, delivery remains the only effective intervention, and preeclampsia is responsible for up to 15% of preterm births and a consequent increase in infant mortality and morbidity (7).
Although the etiology of preeclampsia remains unclear, abnormal placental vascular remodeling and placental ischemia, together with maternal endothelial dysfunction, hemodynamic changes, and renal pathology, contribute to its pathogenesis (8). In addition, over the past decade accumulating evidence has suggested that an imbalance between angiogenic factors, such as placental growth factor (PlGF), and antiangiogenic factors, such as soluble fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglin (sEng), plays a key role in the pathogenesis of preeclampsia (8,9). In women at low risk (10–13) and women at high risk (14,15), concentrations of angiogenic and antiangiogenic factors are significantly different between women who later develop preeclampsia (lower PlGF, higher sFlt-1, and higher sEng levels) compared with women who do not.
Few studies have specifically focused on circulating angiogenic factors and risk of preeclampsia in women with diabetes, and the results have been conflicting. In a small study, higher sFlt-1 and lower PlGF were reported at the time of delivery in women with diabetes who developed preeclampsia (16). In a longitudinal prospective cohort of pregnant women with diabetes, Yu et al. (17) reported increased sFlt-1 and reduced PlGF in the early third trimester as potential predictors of preeclampsia in women with type 1 diabetes, but they did not show any difference in sEng levels in women with preeclampsia compared with women without preeclampsia. By contrast, Powers et al. (18) reported only increased sEng in the second trimester in women with pregestational diabetes who developed preeclampsia.
The aim of this study, which was significantly larger than the previous studies highlighted, was to assess the association between circulating angiogenic (PlGF) and antiangiogenic (sFlt-1 and sEng) factors and the risk of preeclampsia in women with type 1 diabetes. A further aim was to evaluate the added predictive ability and clinical usefulness of angiogenic factors and established risk factors for preeclampsia risk prediction in women with type 1 diabetes.
Resumo:
This paper presents a scalable, statistical ‘black-box’ model for predicting the performance of parallel programs on multi-core non-uniform memory access (NUMA) systems. We derive a model with low overhead, by reducing data collection and model training time. The model can accurately predict the behaviour of parallel applications in response to changes in their concurrency, thread layout on NUMA nodes, and core voltage and frequency. We present a framework that applies the model to achieve significant energy and energy-delay-square (ED2) savings (9% and 25%, respectively) along with performance improvement (10% mean) on an actual 16-core NUMA system running realistic application workloads. Our prediction model proves substantially more accurate than previous efforts.
Resumo:
Model selection between competing models is a key consideration in the discovery of prognostic multigene signatures. The use of appropriate statistical performance measures as well as verification of biological significance of the signatures is imperative to maximise the chance of external validation of the generated signatures. Current approaches in time-to-event studies often use only a single measure of performance in model selection, such as logrank test p-values, or dichotomise the follow-up times at some phase of the study to facilitate signature discovery. In this study we improve the prognostic signature discovery process through the application of the multivariate partial Cox model combined with the concordance index, hazard ratio of predictions, independence from available clinical covariates and biological enrichment as measures of signature performance. The proposed framework was applied to discover prognostic multigene signatures from early breast cancer data. The partial Cox model combined with the multiple performance measures were used in both guiding the selection of the optimal panel of prognostic genes and prediction of risk within cross validation without dichotomising the follow-up times at any stage. The signatures were successfully externally cross validated in independent breast cancer datasets, yielding a hazard ratio of 2.55 [1.44, 4.51] for the top ranking signature.
Resumo:
Different classes of constitutive models have been proposed to capture the time-dependent behaviour of soft soil (creep, stress relaxation, rate dependency). This paper critically reviews many of the models developed based on understanding of the time dependent stress-strain-stress rate-strain rate behaviour of soils and viscoplasticity in terms of their strengths and weaknesses. Some discussion is also made on the numerical implementation aspects of these models. Typical findings from numerical analyses of geotechnical structures constructed on soft soils are also discussed. The general elastic viscoplastic (EVP) models can roughly be divided into two categories: models based on the concept of overstress and models based on non-stationary flow surface theory. Although general in structure, both categories have their own strengths and shortcomings. This review indicates that EVP analysis is yet to be vastly used by the geotechnical engineers, apparently due to the mathematical complication involved in the formulation of the constitutive models, unconvincing benefit in terms of the accuracy of performance prediction, requirement of additional soil parameter(s), difficulties in determining them, and the necessity of excessive computing resources and time. © 2013 Taylor & Francis.
Resumo:
Knowledge on the life span of the riveting dies used in the automotive industry is sparse. It is often the case that only when faulty products are produced are workers aware that their tool needs to be changed. This is of course costly both in terms of time and money. Responding to this challenge, this paper proposes a methodology which integrates wear and stress analysis to quantify the life of a riveting die. Experiments are carried out to measure the applied load required to split a rivet. The obtained results (i.e. force curves) are used to validate the wear mechanisms of the die observed using scanning electron microscopy. Sliding, impact, and adhesive wears are observed on the riveting die after a certain number of riveting cycles. The stress distribution on the die during riveting is simulated using a finite element (FE) approach. In order to confirm the accuracy of the FE model, the experimental force results are compared with the ones produced from FE simulation. The maximum and minimum von Mises' stresses generated from the FE model are input into a Goodman diagram and an S-N curve to compute the life of the riveting die. It is found that the riveting die is predicted to run for 4 980 000 cycles before failure.
Resumo:
This work proposes a novel approach to compute transonic Lim
it Cycle Oscillations using high fidelity analysis. CFD based Harmonic Balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a new methodology to determine the unknown frequency of oscillations, enabling HB methods to accurately capture Limit Cycle Oscillations (LCOs); this is achieved by defining a frequency updating procedure based on a coupled CFD/CSD Harmonic Balance formulation to find the LCO condition. A pitch/plunge aerofoil and delta wing aerodynamic and respective linear structural models are used to validate the new method against conventional time-domain simulations. Results show consistent agreement between the proposed and time-marching methods for both LCO amplitude and frequency, while producing at least one order of magnitude reduction in computational time.
Resumo:
Objective: To simultaneously evaluate 14 biomarkers from distinct biological pathways for risk prediction of ischemic stroke, including biomarkers of hemostasis, inflammation, and endothelial activation as well as chemokines and adipocytokines.
Methods and Results: The Prospective Epidemiological Study on Myocardial Infarction (PRIME) is a cohort of 9771 healthy men 50 to 59 years of age who were followed up over 10 years. In a nested case–control study, 95 ischemic stroke cases were matched with 190 controls. After multivariable adjustment for traditional risk factors, fibrinogen (odds ratio [OR], 1.53; 95% confidence interval [CI], 1.03–2.28), E-selectin (OR, 1.76; 95% CI, 1.06–2.93), interferon-γ-inducible-protein-10 (OR, 1.72; 95% CI, 1.06–2.78), resistin (OR, 2.86; 95% CI, 1.30–6.27), and total adiponectin (OR, 1.82; 95% CI, 1.04–3.19) were significantly associated with ischemic stroke. Adding E-selectin and resistin to a traditional risk factor model significantly increased the area under the receiver-operating characteristic curve from 0.679 (95% CI, 0.612–0.745) to 0.785 and 0.788, respectively, and yielded a categorical net reclassification improvement of 29.9% (P=0.001) and 28.4% (P=0.002), respectively. Their simultaneous inclusion in the traditional risk factor model increased the area under the receiver-operating characteristic curve to 0.824 (95% CI, 0.770–0.877) and resulted in an net reclassification improvement of 41.4% (P<0.001). Results were confirmed when using continuous net reclassification improvement.
Conclusion: Among multiple biomarkers from distinct biological pathways, E-selectin and resistin provided incremental and additive value to traditional risk factors in predicting ischemic stroke.
Resumo:
This work proposes a extends a novel approach to compute tran sonic Limit Cycle Oscillations using high fidelity analysis. CFD based Harmonic Balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a methodology to determine the unknown frequency of oscillations using an implicit for- mulation of the HB method to accurately capture Limit Cycle Oscillations (LCOs); this is achieved by defining a frequency updating procedure based on a coupled CFD/CSD Harmonic Balance formulation to find the LCO condition. A pitch/plunge aerofoil and respective linear structural models is used to exercise the new method. Results show consistent agreement between the proposed and time-marching methods for both LCO amplitude and frequency.
Resumo:
The Harmonic Balance method is an attractive solution for computing periodic responses and can be an alternative to time domain methods, at a reduced computational cost. The current paper investigates using a Harmonic Balance method for simulating limit cycle oscillations under uncertainty. The Harmonic Balance method is used in conjunction with a non-intrusive polynomial-chaos approach to propagate variability and is validated against Monte Carlo analysis. Results show the potential of the approach for a range of nonlinear dynamical systems, including a full wing configuration exhibiting supercritical and subcritical bifurcations, at a fraction of the cost of performing time domain simulations.
Resumo:
OBJECTIVES: To investigate mechanisms of reduced susceptibility to commonly used antibiotics in Prevotella cultured from patients with cystic fibrosis (CF), patients with invasive infection and healthy control subjects and to determine whether genotype can be used to predict phenotypic resistance.
METHODS: The susceptibility of 157 Prevotella isolates to seven antibiotics was compared, with detection of resistance genes (cfxA-type gene, ermF and tetQ), mutations within the CfxA-type β-lactamase and expression of efflux pumps.
RESULTS: Prevotella isolates positive for a cfxA-type gene had higher MICs of amoxicillin and ceftazidime compared with isolates negative for this gene (P < 0.001). A mutation within the CfxA-type β-lactamase (Y239D) was associated with ceftazidime resistance (P = 0.011). The UK CF isolates were 5.3-fold, 2.7-fold and 5.7-fold more likely to harbour ermF compared with the US CF, UK invasive and UK healthy control isolates, respectively. Higher concentrations of azithromycin (P < 0.001) and clindamycin (P < 0.001) were also required to inhibit the growth of the ermF-positive isolates compared with ermF-negative isolates. Furthermore, tetQ-positive Prevotella isolates had higher MICs of tetracycline (P = 0.001) and doxycycline (P < 0.001) compared with tetQ-negative isolates. Prevotella spp. were also shown, for the first time, to express resistance nodulation division (RND)-type efflux pumps.
CONCLUSIONS: This study has demonstrated that Prevotella isolated from various sources harbour a common pool of resistance genes and possess RND-type efflux pumps, which may contribute to tetracycline resistance. The findings indicate that antibiotic resistance is common in Prevotella spp., but the genotypic traits investigated do not reflect phenotypic antibiotic resistance in every instance.
Resumo:
Low-velocity impact damage can drastically reduce the residual mechanical properties of the composite structure even when there is barely visible impact damage. The ability to computationally predict the extent of damage and compression after impact (CAI) strength of a composite structure can potentially lead to the exploration of a larger design space without incurring significant development time and cost penalties. A three-dimensional damage model, to predict both low-velocity impact damage and compression after impact CAI strength of composite laminates, has been developed and implemented as a user material subroutine in the commercial finite element package, ABAQUS/Explicit. The virtual tests were executed in two steps, one to capture the impact damage and the other to predict the CAI strength. The observed intra-laminar damage features, delamination damage area as well as residual strength are discussed. It is shown that the predicted results for impact damage and CAI strength correlated well with experimental testing.