953 resultados para Transport properties.
Resumo:
The starch of maca (Lepidium meyenii Walpers) presented oval and irregular morphology, with granule size between 7.4 and 14.9 mu m in length and 5.8 and 9.3 mu m in diameter. The isolated starch showed the following features: purity of 87.8%, with 0.28% lipids, 0.2% fibre and 0.12% fixed mineral residue, and no protein detected; the ratio between the amylose and amylopectin contents were 20:80: the solubility at 90 degrees C was 61.4%, the swelling power was 119.0g water/g starch and the water absorption capacity was 45.9 g water/g starch; the gel turbidity rose 44% during the storing time; the gelatinization temperature was 47.7 degrees C and the transition enthalpy 6.22 J/g; the maximum viscosity reached 1260 UB at 46.4 degrees C, with breakdown, setback and consistence of 850, 440 and -410 UB, respectively. The low gelling temperature and the stability during gel refrigeration could be adequate for foods requiring moderate temperature process, but not for frozen food. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The cashew apple (Anacardium occidentale L.) contains phenolic compounds usually related with antioxidant properties. Then, the aim of this study was to investigate its antioxidant capacity. The antioxidant capacity of the hydroalcoholic extract of the cashew apple pulp (EHAlc.) was assessed for the scavenging of the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) by in vitro method and by an in vivo essay. For this essay a 30-day oral (gavage, EHAlc. 200 and 400 mg/kg) study was conducted in Wistar male rats, evaluating hepatic, plasma and brain tissues. In DPPH model, the extract demonstrated antioxidant activity of 95% (largest concentration, 1000 mu g/mL). There were found no relevant peroxidation comparing the treated animals with the control group. However, the treated group presented a lower level of brain lipoperoxidation. Also in the treated animals brain tissue was found the largest amount of polyunsaturated fatty acids (PUFA), mainly docosahexaenoic (DHA). Therqfore, the analyzed extract from cashew apple pulp clone CCP-76 contains effective natural antioxidants, responsible for free radical scavenging in vitro and also for decreasing the brain lipoperoxidation and keeping the PUFAS levels in Wistar rats.
Resumo:
The effect of probiotic cultures on sensory performance of coconut flan during storage at 5 degrees C and the viability of these micro organisms for up to 28 days were investigated. Sensory analyses of the product were performed after 7, 14 and 21 days of storage. Coconut flans were produced with no addition of cultures (T1, control), or supplemented with Bifidobacterium lactis (T2), Lactobacillus paracasei (T3) and B. lactis + L. paracasei (T4). Populations of L. paracasei and B. lactis as single or in co-culture remained above 7 log CFU g(-1) during the entire storage period. Viability of L. paracasei was higher for T3. All products were well accepted and no significant differences (P > 0.05) were detected between the coconut flans studied. The addition of L. paracasei and B. lactis to coconut flan resulted in its having great potential as a functional food, which has high sensory acceptability.
Resumo:
The Brazil nut (Bertholletia excelsa) of the Amazon region is consumed worldwide. It is rich in both monounsaturated fatty acids and polyunsaturated fatty acids and is known for its high selenium content. This study tested the hypothesis whether the consumption of this nut could affect the plasma lipids and apolipoproteins and some functional properties of the antiatherogenic high-density lipoprotein (HDL). Fifteen normolipidemic subjects aged 27.3 +/- 3.9 years and with body mass index of 23.8 +/- 2.8 kg/m(2) consumed 45 g of Brazil nuts per day during a 15-day period. On days 0 and 15, blood was collected for biochemical analysis, determination of HDL particle size, paraoxonase 1 activity, and lipid transfer from a lipoprotein-like nanoparticle to the HDL fraction. Brazil nut ingestion did not alter HDL, low-density lipoprotein cholesterol, triacylglycerols, apolipoprotein A-1, or apolipoprotein B concentrations. HDL particle diameter and the activity of antioxidative paraoxonase 1, mostly found in the HDL fraction, Were also unaffected. Supplementation increased the reception of cholesteryl esters (P <.05) by the HDL yet did not alter the reception of phospholipids, free cholesterol, or triacylglycerols. As expected, plasma selenium was significantly increased. However, the consumption of Brazil nuts for short duration by normolipidemic subjects in comparable amounts to those tested for other nuts did not alter serum lipid profile. The only alteration in HDL function was the increase in cholesteryl ester transfer. This latter finding may be beneficial because it would improve the nonatherogenic reverse cholesterol transport pathway. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND: The interaction between lipoxygenase-active soybean flour (LOX) and ascorbic acid (AA), on colour, rheological and sensory properties of wheat bread was studied with the aim of reducing the applied quantity of additives in bread formulations. RESULTS: The ascorbic acid (0-500 ppm) and active soybean flour (0-1%) mixture improved bread-crumb colour by lowering the yellow hue in a higher proportion than those expressed by the components alone, characterising a synergistic mechanism ((y) over cap (b) = 15.1- (1.7 x LOX) - (0.5 x AA) - (5.8 x LOX x AA), where : (y) over cap (b) represent the estimated value for the yellow hue parameter). No differences in flavour and porosity were seen between the samples. As supported by the instrumental methods, breads made with active soybean flour and ascorbic acid (LOX + AA) had whiter crumbs and were softer and springier than controls as assessed by a trained sensory panel. In summary, the combination of both active soybean flour and ascorbic acid showed synergism, promoting a greater bleaching effect than when used alone. CONCLUSION: These results suggest the potential use of active soybean flour as a synergistic ingredient in the substitution of artificial additives in bread making. Since the interaction on the bleaching response was not linear and active soybean flour showed a higher iron concentration (66.40 +/- 4.23 mu g g(-1)) than non-active soybean flour (52.30 +/- 0.40 mu g g(-1)), more studies are warranted to establish the biochemical mechanisms involved in this interaction. (c) 2007 Society of Chemical Industry.
Resumo:
Bidirectional transport studies were conducted using Caco-2, MDCK, and MDCK-MDR1 to determine P-gp influences in lamivudine and zidovudine permeability and evaluate if zidovudine permeability changes with the increase of zidovudine concentration and/or by association of lamivudine. Transport of lamivudine and zidovudine separated and coadministrated across monolayers based on these cells were quantified using LC-MS-MS. Drug efflux by P-gp was inhibited using GG918. Bidirectional transport of lamivudine and zidovudine was performed across MDCK-MDR1 and Caco-2 cells. Statistically significant transport decrease in B -> A direction was observed using MDCK-MDR1 for zidovudine and MDCK-MDR1 and Caco-2 for lamivudine. Results show increased transport in B -> A and A -> B directions as concentration increases but data from P(app) increase in both directions for both drugs in Caco-2, decrease in MDCK, and does not change significantly in MDCK-MDR1. Zidovudine transport in A -> B direction increases when coadministrated with increasing lamivudine concentration but does not change significantly in B -> A direction. Zidovudine and lamivudine are P-gp substrates, but results assume that P-gp does not affect significantly lamivudine and zidovudine. Their transport in monolayers based on Caco-2 cells increase proportionally to concentration (in both directions) and zidovudine transport in Caco-2 cell monolayer does not show significant changes with lamivudine increasing concentrations. (C) 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4413-4419, 2009
Resumo:
introducing a pharmaceutical product on the market involves several stages of research. The scale-up stage comprises the integration of previous phases of development and their integration. This phase is extremely important since many process limitations which do not appear on the small scale become significant on the transposition to a large one. Since scientific literature presents only a few reports about the characterization of emulsified systems involving their scaling-up, this research work aimed at evaluating physical properties of non-ionic and anionic emulsions during their manufacturing phases: laboratory stage and scale-up. Prototype non-ionic (glyceryl monostearate) and anionic (potassium cetyl phosphate) emulsified systems had the physical properties by the determination of the droplet size (D[4,3 1, mu m) and rheology profile. Transposition occurred from a batch of 500-50,000 g. Semi-industrial manufacturing involved distinct conditions: intensity of agitation and homogenization. Comparing the non-ionic and anionic systems, it was observed that anionic emulsifiers generated systems with smaller droplet size and higher viscosity in laboratory scale. Besides that, for the concentrations tested, augmentation of the glyceryl monostearate emulsifier content provided formulations with better physical characteristics. For systems with potassium cetyl phosphate, droplet size increased with the elevation of the emulsifier concentration, suggesting inadequate stability. The scale-up provoked more significant alterations on the rheological profile and droplet size on the anionic systems than the non-ionic. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Obtention and Evaluation of Inclusion Complexes of Furosemide with beta-ciclodextrin and hidroxipropil-beta-ciclodextrin: Effects on Drug`s Dissolution Properties. The purpose of this study was to prepare, characterize and evaluate the dissolution behavior of inclusion complexes of furosemide with beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD). Solid complexes of furosemide with P-CD and-HP-beta-CD were prepared by using a freeze-drying method. Physical mixtures were prepared for comparison. The inclusion complexes were characterized by differential scanning calorimetry (DSC), Infrared (IR) and dissolution test. ""In vitro"" dissolutions assays were performed at pH 1,2; pH 4,5 and pH 6,8 media for a 60 min period. Statistical analysis employing ANOVA and Tukey`s Test, for the dissolution efficiency values (ED%), showed that complexation of furosemide with both cyclodextrins improved significantly ED% of the drug in all tested media, suggesting a minor pH influence on dissolution properties of the drug.
Resumo:
PEGylation is a successful strategy for improving the biochemical and biopharmaceutical properties of proteins and peptides through the covalent attachment of polyethylene glycol chains. In this work, purified recombinant uricase from Candida sp. (UC-r) was modified by PEGylation with metoxypolyethilenoglycol-p-nitrophenyl-carbonate (mPEG-pNP) and metoxypolyethyleneglycol-4,6-dichloro-s-triazine (mPEG-CN). The UC-r-mPEG-pNP and UC-r-mPEG-CN conjugates retained 87% and 75% enzyme activity respectively. The K(M) values obtained 2.7 x 10(-5) M (mPEG-pNP) or 3.0 x 10(-5) M (mPEG-CN) lot the conjugates as compared to 5.4 x 10(-5) M for the native UC-r, suggesting enhancement in the substrate affinity of the enzyme attached. The effects of pH and temperature on PEGylated UC-r indicated that the conjugates were more active at close physiological pH and were stable up to 70 degrees C. Spectroscopic study performed by circular dichroism at 20 degrees C and 50 degrees C did not show any relevant difference in protein structure between native and PEGylated UC-r. In rabbit and Balb/c mice, the native UC-r elicited an intense immune response being highly immunogenic. On the other hand, the PEGylated UC-r when injected chronically in mice did not induce any detectable antibody response. This indicates sufficient reduction of the immunogenicity this enzyme by mPEG-pNP or mPEG-CN conjugation, making it suitable for a possible therapeutical use. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Chemical interesterification is an important technological option for the production of fats targeting commercial applications. Fat blends, formulated by binary blends of palm stearin and palm olein in different ratios, were subjected to chemical interesterification. The following determinations, before and after the interesterification reactions, were done: fatty acid composition, softening point, melting point, solid fat content and consistency. For the analytical responses a multiple regression statistical model was applied. This study has shown that blending and chemical interesterifications are an effective way to modify the physical and chemical properties of palm stearin, palm olein and their blends. The mixture and chemical interesterification allowed obtaining fats with various degrees of plasticity, increasing the possibilities for the commercial use of palm stearin and palm olein. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work evaluated chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) blends, with 20%, 25%, 30%, 35% and 40%(w/w) FHCSO content. Interesterification produced reduction of trisaturated and increase in monounsaturated and diunsaturated triacylglycerols contents, which caused important changes in temperatures and enthalpies associated with the crystallization and melting thermograms. It was verified reduction in medium crystal diameter in all blends, in addition crystal morphology modification. Crystallization kinetics revealed that crystal formation induction period and maximum solid fat content were altered according to FHCSO content in original blends and as a result of random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that interesterification decreased crystallization rates and altered crystalline morphology. However, X-ray diffraction analyses showed randomization did not change the original crystalline polymorphism. The original and interesterified blends had significant predominance of beta` polymorph, which is interesting for several food applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The main goal of the present research effort was to evaluate the physical-chemical properties of blends of lard and soybean oil following enzymatic interesterification catalyzed by an immobilized lipase from Thermomyces lanuginosa (Lipozyme (TM) TL IM). Lipase-catalyzed interesterification produced new tri-acylglycerols that changed the physical-chemical properties of the fat blends under study. Solid fat content (31.3 vs 31.5 g/100 g), consistency (104.7 vs 167.6 kPa), crystallized area (0.6 vs 11.8) and softening point (31.8 vs 32.2 degrees C) of lard increased after interesterification, and this was mostly due to the increase of SSS (saturated) + SSU (disaturated-monounsaturated) triacylglycerols. These contents (SSU + SSS) increased in lard after interesterification from 42.9 to 46.7 g/100 g. The interesterified blends exhibited lower values for the physical properties when compared with their counterparts before enzymatic interesterification. The interesterification of blends of lard with soybean oil increased the amounts of UUU (triunsaturated) and SSS triacylglycerols and reduced the amounts of UUS (diunsaturated-monosaturated) triacylglycerols. The interesterified blends of lard and soybean oil demonstrated physical properties and chemical composition similar to human milk fat and they could be used for the production of a human milk fat substitute. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Blends of canola oil (CO) and fully hydrogenated cottonseed oil (FHCSO), with 20, 25, 30, 35 and 40% FHCSO (w/w) were interesterified under the following conditions: 0.4% sodium methoxide, 500 rpm stirring, 100C, 20 min. The original and interesterified blends were examined for triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interesterification caused considerable rearrangement of triacylglycerol species, reduction of trisaturated triacylglycerol content and increase in disaturated-monounsaturated and monosaturated-diunsaturated triacylglycerols in all blends, resulting in lowering of respective melting points. The interesterified blends showed reduced SFC at all temperatures and more linear melting profiles if compared with the original blends. Consistency, expressed as yield value, significantly decreased after the reaction. Iso-solid curves indicated eutectic interactions for the original blends, which were eliminated after randomization. The 80:20, 75:25, 70:30 and 65:35 (w/w) CO: FHCSO interesterified blends showed characteristics which are appropriate for their application as soft margarines, spreads, fat for bakery/all-purpose shortenings, and icing shortenings, respectively. PRACTICAL APPLICATIONS Recently, a number of studies have suggested a direct relationship between trans isomers and increased risk of vascular disease. In response, many health organizations have recommended reducing consumption of foods containing trans fatty acids. In this connection, chemical interesterification has proven the main alternative for obtaining plastic fats that have low trans isomer content or are even trans isomer free. This work proposes to evaluate the chemical interesterification of binary blends of canola oil and fully hydrogenated cottonseed oil and the specific potential application of these interesterified blends in food products.
Resumo:
Blends of soybean oil (SO) and fully hydrogenated soybean oil (FHSBO), with 10, 20, 30, 40, and 50% (w/w) FHSBO content were interesterified under the following conditions: 20 min reaction time, 0.4% sodium methoxide catalyst, and 500 rpm stirring speed, at 100 A degrees C. The original and interesterified blends were examined for triacylglycerol composition, thermal behavior, microstructure, crystallization kinetics, and polymorphism. Interesterification produced substantial rearrangement of the triacylglycerol species in all the blends, reduction of trisaturated triacylglycerol content and increase in monounsaturated-disaturated and diunsaturated-monosaturated triacylglycerols. Evaluation of thermal behavior parameters showed linear relations with FHSBO content in the original blends. Blend melting and crystallization thermograms were significantly modified by the randomization. Interesterification caused significant reductions in maximum crystal diameter in all blends, in addition to modifying crystal morphology. Characterization of crystallization kinetics revealed that crystal formation induction period (tau (SFC)) and maximum solid fat content (SFC(max)) were altered according to FHSBO content in the original blends and as a result of the random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that-as compared with the original blends-interesterification decreased crystallization velocities and modified crystallization processes, altering crystalline morphology and nucleation mechanism. X-ray diffraction analyses revealed that interesterification altered crystalline polymorphism. The interesterified blends showed a predominance of the beta` polymorph, which is of more interest for food applications.
Resumo:
Blends of soybean oil (50) and fully hydrogenated soybean oil (FHSBO), with 10%, 20%, 30%, 40% and 50% FHSBO (w/w) content were interesterified under the following conditions: 0.4% sodium methoxide, 500 rpm stirring, 100 degrees C, 20 min. The original and interesterified blends were examined for triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interesterification caused considerable rearrangement of triacylglycerol species, reduction of trisaturated triacylglycerol content and increase in monounsaturated and diunsaturated triacylglycerols, resulting in lowering of respective melting points. The interesterified blends displayed reduced SFC at all temperatures and more linear melting profiles as compared with the original blends. Yield values showed increased plasticity in the blends after the reaction. Isosolid diagrams before and after the reaction showed no eutectic interactions. The 90:10, 80:20, 70:30 and 60:40 interesterified SO:FHSBO blends displayed characteristics suited to application, respectively, as liquid shortening, table margarine, baking/confectionery fat and all-purpose shortenings/biscuit-filing base. (C) 2009 Elsevier Ltd. All rights reserved.