991 resultados para Transmissão do Trypanosoma cruzi
Resumo:
The 195-bp satellite DNA is the most abundant Trypanosoma cruzi repetitive sequence. Here we show by RNA blotting and RT-PCR that 195 SAT is intensely transcribed. We observed a positive correlation between the level of satellite RNA and the abundance of the satellite copies in the genome of T cruzi strains and that the satellite expression is not developmentally regulated. By analyzing CL Brener individual reads, we estimated that 195 SAT corresponds to approximately 5% of the CL Brener genome. 195 SAT elements were found in only 37 annotated contigs, indicating that a large number of satellite copies were not incorporated into the assembled data. The assembled satellite units are distributed in non-syntenic regions with Trypanosoma brucei and Leishmania major genomes, enriched with surface proteins, retroelements, RHS and hypothetical proteins. Satellite repeats were not observed in annotated subtelomeric regions. We report that 12 satellite sequences are truncated by the retroelement VIPER. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The ruthenium complex,trans-[Ru(Bz)(NH3)(4)SO2](CF3SO3)(2) 1, Bz = benznidazole (N-benzyl-2-(2-nitro-1H-imidazol-1-yl)acetamide), is more hydrosoluble and more active (IC50try/1 h = 79 +/- 3 mu M) than free benznidazole 2 (IC50try/1 h > 1 mM). 1 also exhibits low acute toxicity in vitro (IC50macrophages > 1 mM) and in vivo (400 mu mol/kg < LD50 < 600 mu mol/kg) and the formation of hydroxylamine is more favorable in 1 than in 2 by 9.6 kcal/mol. In murine acute models of Chagas` disease, 1 was more active than 2 even when only one dose was administrated. Moreover, 1 at a thousand-fold smaller concentration than the considered optimal dose for 2 (385 mu mol/kg/day = 100 mg/kg/day), proved to be sufficient to protect all infected mice, eliminating the amastigotes in their hearts and skeletal muscles as observed in H&E micrographics.
Resumo:
Trypanosomes are flagellated protozoa responsible for serious parasitic diseases that have been classified by the World Health Organization as tropical sicknesses of major importance. One important drug target receiving considerable attention is the enzyme glyceraldehyde-3-phosphate dehydrogenase from the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (T. cruzi Glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH); EC 1.2.1.12). TcGAPDH is a key enzyme in the glycolytic pathway of T. cruzi and catalyzes the oxidative phosphorylation of D-glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate (1,3-BPG) coupled to the reduction of oxidized nicotinamide adenine dinucleotide, (NAD(+)) to NADH, the reduced form. Herein, we describe the cloning of the T. cruzi gene for TcGAPDH into the pET-28a(+) vector, its expression as a tagged protein in Escherichia coli, purification and kinetic characterization. The His(6)-tagged TcGAPDH was purified by affinity chromatography. Enzyme activity assays for the recombinant His(6)-TcGAPDH were carried out spectrophotometrically to determine the kinetic parameters. The apparent Michaelis-Menten constant (K(M)(app)) determined for D-glyceraldehyde-3-phosphate and NAD(+) were 352 +/- 21 and 272 +/- 25 mu M, respectively, which were consistent with the values for the untagged enzyme reported in the literature. We have demonstrated by the use of Isothermal Titration Calorimetry (ITC) that this vector modification resulted in activity preserved for a higher period. We also report here the use of response surface methodology (RSM) to determine the region of optimal conditions for enzyme activity. A quadratic model was developed by RSM to describe the enzyme activity in terms of pH and temperature as independent variables. According to the RMS contour plots and variance analysis, the maximum enzyme activity was at 29.1 degrees C and pH 8.6. Above 37 degrees C, the enzyme activity starts to fall, which may be related to previous reports that the quaternary structure begins a process of disassembly. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The ruthenium NO donors of the group trans-[Ru(NO)(NH(3))(4)L](n+), where the ligand (L) is N-heterocyclic H(2)O, SO(3)(2 -), or triethyl phosphite, are able to lyse Trypanosoma cruzi in vitro and in vivo. Using half-maximal (50%) inhibitory concentrations against bloodstream trypomastigotes (IC(50)(try)) and cytotoxicity data on mammalian V-79 cells (IC(50)(V79)), the in vitro therapeutic indices (TIs) (IC(50)(V79)/IC(50)(try)) for these compounds were calculated. Compounds that exhibited an in vitro TI of >= 10 and trypanocidal activity against both epimastigotes and trypomastigotes with an IC(50)(try/epi) of <= 100 mu M were assayed in a mouse model for acute Chagas` disease, using two different routes (intraperitoneal and oral) for drug administration. A dose-effect relationship was observed, and from that, the ideal dose of 400 nmol/kg of body weight for both trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) (isn, isonicotinamide) and trans-[Ru(NO)(NH3) 4imN](BF4) 3 (imN, imidazole) and median (50%) effective doses (ED50) of 86 and 190 nmol/kg, respectively, were then calculated. Since the 50% lethal doses (LD(50)) for both compounds are higher than 125 mu mol/kg, the in vivo TIs (LD(50)/ED(50)) of the compounds are 1,453 for trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) and 658 for trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3). Although these compounds exhibit a marked trypanocidal activity and are able to react with cysteine, they exhibit very low activity in T. cruzi -glycosomal glyceraldehyde-3-phosphate dehydrogenase tests, suggesting that this enzyme is not their target. The trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) and trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3) compounds are able to eliminate amastigote nests in myocardium tissue at 400-nmol/kg doses and ensure the survival of all infected mice, thus opening a novel set of therapies to try against trypanosomatids.
Resumo:
Artemisia vulgaris (AV) is an antihelmintic and antimalarial drug; Aloe vera(babosa) acts as antidiabetic, laxative and anti-inflammatory; Benznidazole (BZ) is a trypanocidal of Trypanosoma cruzi (TC). Technetium-99m (99mTc) has been used in nuclear medicine to obtain diagnostic images. This study evaluated the plant effects in TC parasitemia and in the biodistribution of 99mTc in mice. Twenty mice were infected by TC. At the peak of parasitemia, 5 mice received babosa; 5 received AV and 5 received BZ. The parasitemia was determined in 0, 2, 4 and 6 h of drugs administration. Five infected mice without drugs, 5 mice without TC and the group treated with AV, received 99mTc. The radioactivity was calculated. Infected mice that received babosa reduced significantly (p<0.05) the parasitemia. The percentage of activity (%ATI) decreased significantly in the AV group. These results indicate that babosa possibly is an anti-TC drug and AV reduces the %ATI probably due to its biological effects
Resumo:
Trypanosoma cruzi infection was evaluated in 390 resident individuals in different rural communities of Caicó municipality, State of Rio Grande do Norte (RN). Of 28 investigated communities the soroprevalence of T. cruzi infection was 2.8% in eight rural communities individuals. The epidemiological characteristics of seropositive shown that the age ranged from 22 to 64 years, being significantly raised from 31 years (90.9%). The female gender was predominant and low education degree. Those individuals reported that they never donated blood, but they had direct contact with triatomines bug. The isolation of the parasite was performed by blood culture and xenoculture methods to determine the genetic variability of the samples. Twenty seven T. cruzi isolates were analyzed by RAPD as genetic marker using three random primers (M13-40, gt11-F and L15996). The T. cruzi isolates showed 73.7% of shared bands considering the average obtained with the three primers, and were genetically well correlated. Using this marker it was possible to separate the populations of the parasite in three distinct groups. The first group composed by isolates obtained of triatomines and humans from four different districts (Caicó, Caraúbas, Serra Negra doNorte and Governador Dix-Sept Rosado); the second contained isolates obtained of triatomines of two different species (T. brasiliensis and P. lutzi) captured in Caraúbas and Serra Negra do Norte. The third grouped isolates obtained from humans of Angicos and Caicó municipalities. In different localities of distinct mesoregions, State of RN, a profile genetic well correlated was identified among all isolates and the presence of three distinct groups of the parasite circulating among vertebrate and invertebrate hosts
Resumo:
Doença de Chagas é uma antropozoonose causada por Trypanosoma cruzi que tem os cães como importante reservatório da doença na América do Sul. Este trabalho teve como objetivo avaliar a ocorrência da infecção natural pelo T. cruzi em cães de uma área rural do estado de Mato Grosso do Sul, Brasil. Foram utilizados os testes de imunofluorescência indireta (IFI) e ensaio imunossorvente ligado a enzima (ELISA) em 75 cães residentes na área. Foram detectados anticorpos em 45,3% (n=34) e 24,0% (n=18) nos testes de IFI e ELISA, respectivamente. A real prevalência da infecção foi confirmada como 22,7% (n=17) pelo critério de positividade em ambos os testes. Os resultados obtidos confirmam a infecção chagásica nos cães dessa região.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A susceptibilidade de ninfas de 3º estádio de Rhodnius neglectus, R. robustus e Triatoma infestans às cepas Y e AMJM de Trypanosoma cruzi foi verificada utilizando xenodiagnóstico artificial. Para a leitura do xenodiagnóstico, as fezes dos triatomíneos foram examinadas a cada dois dias, a partir do 5º até o 31º dia pós infecção, pela técnica de compressão abdominal. Os resultados mostraram diferenças na susceptibilidade dos triatomíneos para as duas cepas estudadas e o período ótimo de leitura variou do 11º ao 19º dias para a cepa Y e do 11º ao 15º dias para a cepa AMJM. Também, pôde-se concluir que para a cepa Y, as três espécies de triatomíneos demonstraram boa susceptibilidade, enquanto para a cepa AMJM, a melhor susceptibilidade foi observada com R. neglectus, seguida pelo T. infestans e R. robustus.
Resumo:
Pre-mRNA maturation in trypanosomatids occurs through a process called trans-splicing which involves excision of introns and union of exons in two independent transcripts. For the first time, we present the standardization of Trypanosoma cruzi permeable cells (Y strain) as a model for trans-splicing study of mRNAs in trypanosomes, following by RNase protection reaction, which localizes the SL exon and intron. This trans-splicing reaction in vitro was also used to analyze the influence of NFOH-121, a nitrofurazone-derivative, on this mechanism. The results suggested that the prodrug affects the RNA processing in these parasites, but the trans-splicing reaction still occurred.
Resumo:
Small nuclear RNAs (snRNAs) are important factors in the functioning of eukaryotic cells that form several small complexes with proteins; these ribonucleoprotein particles (U snRNPs) have an essential role in the pre-mRNA processing, particularly in splicing, catalyzed by spliceosomes, large RNA-protein complexes composed of various snRNPs. Even though they are well defined in mammals, snRNPs are still not totally characterized in certain trypanosomatids as Trypanosoma cruzi. For this reason we subjected snRNAs (U2, U4, U5, and U6) from T. cruzi epimastigotes to molecular characterization by polymerase chain reaction (PCR) and reverse transcription-PCR. These amplified sequences were cloned, sequenced, and compared with those other of trypanosomatids. Among these snRNAs, U5 was less conserved and U6 the most conserved. Their respective secondary structures were predicted and compared with known T. brucei structures. In addition, the copy number of each snRNA in the T. cruzi genome was characterized by Southern blotting.
Resumo:
No fully effective treatment has been developed since the discovery of Chagas' disease by Carlos Chagas in 1909. Since drug-resistant Trypanosoma cruzi strains are occurring and the current therapy is effectiveness in the acute phase but with various adverse side effects, more studies are needed to characterize the susceptibility of T. cruzi to new drugs. Many natural and/or synthetic substances showing trypanocidal activity have been used, even though they are not likely to be turned into clinically approved drugs. Originally, drug screening was performed using natural products, with only limited knowledge of the molecular mechanism involved in the development of diseases. Trans-splicing, which is unusual RNA processing reaction and occurs in nematodes and trypanosomes, implies the processing of polycistronic transcription units into individual mRNAs; a short transcript spliced leader (SL RNA) is trans-spliced to the acceptor pre-mRNA, giving origin to the mature mRNA. In the present study, permeable cells of T. cruzi epimastigote forms (Y, BOL and NCS strains) were treated to evaluate the interference of two drugs (hydroxymethylnitrofurazone - NFOH-121 and nitrofurazone) in the trans-splicing reaction using silver-stained PAGE analysis. Both drugs induced a significant reduction in RNA processing at concentrations from 5 to 12.5 µM. These data agreed with the biological findings, since the number of parasites decreased, especially with NFOH-121. This proposed methodology allows a rapid and cost-effective screening strategy for detecting drug interference in the trans-splicing mechanism of T. cruzi.