940 resultados para Transcription factor binding site motifs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globin genes are subject to tissue-specific and developmental stage-specific regulation. A switch from human fetal (gamma)-to adult (beta)-globin expression occurs within erythroid precursor cells of the adult lineage. Previously we and others showed by targeted gene disruption that the zinc finger gene, erythroid Krüppel-like factor (EKLF), is required for expression of the beta-globin gene in mice, presumably through interaction with a high-affinity binding site in the proximal promoter. To examine the role of EKLF in the developmental regulation of the human gamma-globin gene we interbred EKLF heterozygotes (+/-) with mice harboring a human beta-globin yeast artificial chromosome transgene. We find that in the absence of EKLF, while human beta-globin expression is dramatically reduced, gamma-globin transcripts are elevated approximately 5-fold. Impaired silencing of gamma-globin expression identifies EKLF as the first transcription factor participating quantitatively in the gamma-globin to beta-globin switch. Our findings are compatible with a competitive model of switching in which EKLF mediates an adult stage-specific interaction between the beta-globin gene promoter and the locus control region that excludes the gamma-globin gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brn-4 is a member of the POU transcription factor family and is expressed in the central nervous system. In this study, we addressed whether Brn-4 regulates expression of the D1A dopamine receptor gene. We found a functional Brn-4 responsive element in the intron of this gene by means of cotransfection chloramphenical acetyltransferase assays. This region contains two consensus sequences for binding of POU factors. Gel mobility-shift assays using glutathione S-transferase-Brn-4 fusion protein indicated that Brn-4 binds to these sequences. Both these sites are essential for transactivation by Brn-4 because deletion of either significantly reduced this enhancer activity. In situ hybridization revealed colocalization of Brn-4 and D1A mRNAs at the level of a single neuron in the rat striatum where this dopamine receptor is most abundantly expressed. Gel mobility-supershift assay using rat striatal nuclear extract and Brn-4 antibody confirmed the presence of Brn-4 in this brain region and its ability to bind to its consensus sequences in the D1A gene. These data suggest a functional role for Brn-4 in the expression of the D1A dopamine receptor gene both in vitro and in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urea (200-400 milliosmolar) activates transcription, translation of, and trans-activation by the immediate-early gene transcription factor Egr-1 in a renal epithelial cell-specific fashion. The effect at the transcriptional level has been attributed to multiple serum response elements and their adjacent Ets motifs located within the Egr-1 promoter. Elk-1, a principal ternary complex factor and Ets domain-containing protein, is a substrate of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. In the renal medullary mIMCD3 cell line, urea (200-400 milliosmolar) activated both ERK1 and ERK2 as determined by in-gel kinase assay and immune-complex kinase assay of epitope-tagged] ERK1 and ERK2. Importantly, urea did not affect abundance of either ERK. Urea-inducible Egr-1 transcription was a consequence of ERK activation because the ERK-specific inhibitor, PD98059, abrogated transcription from the murine Egr-1 promoter in a luciferase reported gene assay. In addition, activators of protein kinase A, including forskolin and 8-Br-cAMP, which are known to inhibit ERK-mediated events, also inhibited urea-inducible Egr-1 transcription. Furthermore, urea-inducible activation of the physiological ERK substrate and transcription factor, Elk-1, was demonstrated through transient cotransfection of a chimeric Elk-1/GAL4 expression plasmid and a GAL4-driven luciferase reporter plasmid. Taken together, these data indicate that, in mIMCD3 cells, urea activates ERKs and the ERK substrate, Elk-1, and that ERK inhibition abrogates urea-inducible Egr-1 transcription. These data are consistent with a model of urea-inducible renal medullary gene expression wherein sequential activation of ERKs and Elk-1 results in increased transcription of Egr-1 through serum response element/Ets motifs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The open reading frame P (ORF P) is located in the domain and on the DNA strand of the herpes simplex virus 1 transcribed during latent infection. ORF P is not expressed in productively infected cells as a consequence of repression by the binding of the major viral regulatory protein to its high-affinity binding site. In cells infected with a mutant virus carrying a derepressed gene, ORF P protein is extensively posttranslationally processed. We report that ORF P interacts with a component of the splicing factor SF2/ASF, pulls down a component of the SM antigens, and colocalizes with splicing factors in nuclei of infected cells. The hypothesis that ORF P protein may act to regulate viral gene expression, particularly in situations such as latently infected sensory neurons in which the major regulatory protein is not expressed, is supported by the evidence that in cells infected with a mutant in which the ORF P gene was derepressed, the products of the regulatory genes alpha 0 and alpha 22 are reduced in amounts early in infection but recover late in infection. The proteins encoded by these genes are made from spliced mRNAs, and the extent of recovery of these proteins late in infection correlates with the extent of accumulation of post-translationally processed forms of ORF P protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcription from the middle promoter, Pm, of phage Mu is initiated by Escherichia coli RNA polymerase holoenzyme (E sigma 70; RNAP) and the phage-encoded activator, Mor. Point mutations in the spacer region between the -10 hexamer and the Mor binding site result in changes of promoter activity in vivo. These mutations are located at the junction between a rigid T-tract and adjacent, potentially deformable G + C-rich DNA segment, suggesting that deformation of the spacer region may play a role in the transcriptional activation of Pm. This prediction was tested by using dimethyl sulfate and potassium permanganate footprinting analyses. Helical distortion involving strand separation was detected at positions -32 to -34, close to the predicted interface between Mor and RNAP. Promoter mutants in which this distortion was not detected exhibited a lack of melting in the -12 to -1 region and reduced promoter activity in vivo. We propose that complexes containing the distortion represent stressed intermediates rather than stable open complexes and thus can be envisaged as a transition state in the kinetic pathway of Pm activation in which stored torsional energy could be used to facilitate melting around the transcription start point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signals emanating from CD40 play crucial roles in B-cell function. To identify molecules that transduce CD40 signalings, we have used the yeast two-hybrid system to done cDNAs encoding proteins that bind the cytoplasmic tail of CD40. A cDNA encoding a putative signal transducer protein, designated TRAF5, has been molecularly cloned. TRAF5 has a tumor necrosis factor receptor-associated factor (TRAF) domain in its carboxyl terminus and is most homologous to TRAF3, also known as CRAF1, CD40bp, or LAP-1, a previously identified CD40-associated factor. The amino terminus has a RING finger domain, a cluster of zinc fingers and a coiled-coil domain, which are also present in other members of the TRAF family protein except for TRAF1. In vitro binding assays revealed that TRAF5 associates with the cytoplasmic tail of CD40, but not with the cytoplasmic tail of tumor receptor factor receptor type 2, which associates with TRAF2. Based on analysis of the association between TRAF5 and various CD40 mutants, residues 230-269 of CD40 are required for the association with TRAF5. In contrast to TRAF3, overexpression of TRAF5 activates transcription factor nuclear factor kappa B. Furthermore, amino-terminally truncated forms of TRAF5 suppress the CD40-mediated induction of CD23 expression, as is the case with TRAF3. These results suggest that TRAF5 and TRAF3 could be involved in both common and distinct signaling pathways emanating from CD40.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neuron-restrictive silencer factor (NRSF) represses transcription of several neuronal genes in nonneuronal cells by binding to a 21-bp element called the neuron-restrictive silencer element (NRSE). We have performed data base searches with a composite NRSE to identify additional candidate NRSF target genes. Twenty-two more genes, 17 of which are expressed mainly in neurons, were found to contain NRSE-like sequences. Many of these putative NRSEs bound NRSF in vitro and repressed transcription in vivo. Most of the neuronal genes identified contribute to the basic structural or functional properties of neurons. However, two neuronal transcription factor genes contain NRSEs, suggesting that NRSF may repress neuronal differentiation both directly and indirectly. Functional NRSEs were also found in several nonneuronal genes, implying that NRSF may play a broader role than originally anticipated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct imaging with the atomic force microscope has been used to identify specific nucleotide sequences in plasmid DNA molecules. This was accomplished using EcoRI (Gln-111), a mutant of the restriction enzyme that has a 1000-fold greater binding affinity than the wild-type enzyme but with cleavage rate constants reduced by a factor of 10(4). ScaI-linearized plasmids with single (pBS+) and double (pGEM-luc and pSV-beta-galactosidase) EcoRI recognition sites were imaged, and the bound enzyme was localized to a 50- to 100-nt resolution. The high affinity for the EcoRI binding site exhibited by this mutant endonuclease, coupled with an observed low level of nonspecific binding, should prove valuable for physically mapping large DNA clones by direct atomic force microscope imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximately 40% of diffuse large cell lymphoma are associated with chromosomal translocations that deregulate the expression of the BCL6 gene by juxtaposing heterologous promoters to the BCL-6 coding domain. The BCL6 gene encodes a 95-kDa protein containing six C-terminal zinc-finger motifs and an N-terminal POZ domain, suggesting that it may function as a transcription factor. By using a DNA sequence selected for its ability to bind recombinant BCL-6 in vitro, we show here that BCL-6 is present in DNA-binding complexes in nuclear extracts from various B-cell lines. In transient transfectin experiments, BCL6 can repress transcription from promoters linked to its DNA target sequence and this activity is dependent upon specific DNA-binding and the presence of an intact N-terminal half of the protein. We demonstrate that this part of the BCL6 molecule contains an autonomous transrepressor domain and that two noncontiguous regions, including the POZ motif, mediate maximum transrepressive activity. These results indicate that the BCL-6 protein can function as a sequence-specific transcriptional repressor and have implications for the role of BCL6 in normal lymphoid development and lymphomagenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human gene MAGE-1 encodes tumor-specific antigens that are recognized on melanoma cells by autologous cytolytic T lymphocytes. This gene is expressed in a significant proportion of tumors of various histological types, but not in normal tissues except male germ-line cells. We reported previously that reporter genes driven by the MAGE-1 promoter are active not only in the tumor cell lines that express MAGE-1 but also in those that do not. This suggests that the critical factor causing the activation of MAGE-1 in certain tumors is not the presence of the appropriate transcription factors. The two major MAGE-1 promoter elements have an Ets binding site, which contains a CpG dinucleotide. We report here that these CpG are demethylated in the tumor cell lines that express MAGE-1, and are methylated in those that do not express the gene. Methylation of these CpG inhibits the binding of transcription factors, as seen by mobility shift assay. Treatment with the demethylating agent 5-aza-2'-deoxycytidine activated gene MAGE-1 not only in tumor cell lines but also in primary fibroblasts. Finally, the overall level of CpG methylation was evaluated in 20 different tumor cell lines. It was inversely correlated with the expression of MAGE-1. We conclude that the activation of MAGE-1 in cancer cells is due to the demethylation of the promoter. This appears to be a consequence of a genome-wide demethylation process that occurs in many cancers and is correlated with tumor progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using genetically engineered glomerular mesangial cells, an in vivo gene transfer approach was developed that specifically targets the renal glomerulus. By combining this system with a tetracycline (Tc)-responsive promoter, the present study aimed to create a reversible on/off system for site-specific in vivo control of exogenous gene activity within the glomerulus. In the Tc regulatory system, a Tc-controlled transactivator (tTA) encoded by a regulator plasmid induces target gene transcription by binding to a tTA-responsive promoter located in a response plasmid. Tc inhibits this tTA-dependent transactivation via its affinity for tTA. In double-transfected cells, therefore, the activity of a transgene can be controlled by Tc. Cultured rat mesangial cells were cotransfected with a regulator plasmid and a response plasmid that introduces a beta-galactosidase gene. In vitro, stable double-transfectant MtTAG cells exhibited no beta-galactosidase activity in the presence of Tc. However, following withdrawal of Tc from culture media, expression of beta-galactosidase was induced within 24 h. When Tc was again added, the expression was rapidly resuppressed. Low concentrations of Tc were sufficient to maintain the silent state of tTA-dependent promoter. MtTAG cells were then transferred into the rat glomeruli via renal artery injection. In the isolated chimeric glomeruli, expression of beta-galactosidase was induced ex vivo in the absence of Tc, whereas it was repressed in its presence. When Tc-pretreated MtTAG cells were transferred into the glomeruli of untreated rats, beta-galactosidase expression was induced in vivo within 3 days. Oral administration of Tc dramatically suppressed this induction. These data demonstrate the feasibility of using mesangial cell vectors combined with the Tc regulatory system for site-specific in vivo control of exogenous gene expression in the glomerulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TRAF1 and TRAF2 form an oligomeric complex that associates with the cytoplasmic domains of various members of the tumor necrosis factor (TNF) receptor superfamily. TRAF2 action is required for activation of the transcription factor NF-kappaB triggered by TNF and the CD40 ligand. Here we show that TRAF1 and TRAF2 interact with A20, a zinc finger protein, whose expression is induced by agents that activate NF-kappaB. Mutational analysis revealed that the N-terminal half of A20 interacts with the conserved C-terminal TRAF domain of TRAF1 and TRAF2. In cotransfection experiments, A20 blocked TRAF2-mediated NF-kappaB activation. A20 also inhibited TNF and IL-1-induced NF-kappaB activation, suggesting that it may inhibit NF-kappaB activation signaled by diverse stimuli. The ability of A20 to block NF-kappaB activation was mapped to its C-terminal zinc finger domain. Thus, A20 is composed of two functionally distinct domains, an N-terminal TRAF binding domain that recruits A20 to the TRAF2-TRAF1 complex and a C-terminal domain that mediates inhibition of NF-kappaB activation. Our findings suggest a possible molecular mechanism that could explain A20's ability to negatively regulate its own TNF-inducible expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stress response promoter element (STRE) confers increased transcription to a set of genes following environmental or metabolic stress in Saccharomyces cerevisiae. A lambda gt11 library was screened to isolate clones encoding STRE-binding proteins, and one such gene was identified as MSN2, which encoded a zinc-finger transcriptional activator. Disruption of the MSN2 gene abolished an STRE-binding activity in crude extracts as judged by both gel mobility-shift and Southwestern blot experiments, and overexpression of MSN2 intensified this binding activity. Northern blot analysis demonstrated that for the known or suspected STRE-regulated genes DDR2, CTT1, HSP12, and TPS2, transcript induction was impaired following heat shock or DNA damage treatment in the msn2-disrupted strain and was constitutively activated in a strain overexpressing MSN2. Furthermore, heat shock induction of a STRE-driven reporter gene was reduced more than 6-fold in the msn2 strain relative to wild-type cells. Taken together, these data indicate that Msn2p is the transcription factor that activates STRE-regulated genes in response to stress. Whereas nearly 85% of STRE-mediated heat shock induction was MSN2 dependent, there was significant MSN2-independent expression. We present evidence that the MSN2 homolog, MSN4, can partially replace MSN2 for transcriptional activation following stress. Moreover, our data provides evidence for the involvement of additional transcription factors in the yeast multistress response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The t(2;13) translocation of alveolar rhabdomyosarcoma results in tumor-specific expression of a chimeric transcription factor containing the N-terminal DNA-binding domain of PAX3 and the C-terminal transactivation domain of FKHR. Here we have tested the hypothesis that PAX3-FKHR gains function relative to PAX3 as a consequence of switching PAX3 and FKHR transactivation domains, which were previously shown to have similar potency but distinct structural motifs. In transient cotransfection assays with human expression constructs, we have demonstrated the increased ability of PAX3-FKHR to activate transcription of a reporter gene located downstream of multimerized e5, PRS-9, or CD19 DNA-binding sites in three cell lines. For example, PAX3-FKHR was 100-fold more potent than PAX3 as an activator binding to e5 sites in NIH 3T3 cells. To compare transactivation potency independent of PAX3-specific DNA binding, we tested GAL4 fusions of full-length PAX3 and PAX3-FKHR or their respective C-terminal transactivation domains on a reporter with GAL4 DNA-binding sites. In this context, full-length PAX3-FKHR was also much more potent than PAX3. Additionally, the activity of each full-length protein was decreased relative to its C-terminal domain, demonstrating that N-terminal sequences are inhibitory. By deletion analysis, we mapped a bipartite cis-acting inhibitory domain to the same subregions within the DNA-binding domains of both PAX3 and PAX3-FKHR. We have shown, however, that the structurally distinct transactivation domains of PAX3 and PAX3-FKHR differ 10- to 100-fold in their susceptibility to inhibition, thus elucidating a mechanism by which PAX3 gains enhanced function during oncogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The translocation t(10;11)(p13;q14) is a recurring chromosomal abnormality that has been observed in patients with acute lymphoblastic leukemia as well as acute myeloid leukemia. We have recently reported that the monocytic cell line U937 has a t(10;11)(p13;q14) translocation. Using a combination of positional cloning and candidate gene approach, we cloned the breakpoint and were able to show that AF10 is fused to a novel gene that we named CALM (Clathrin Assembly Lymphoid Myeloid leukemia gene) located at 11q14. AF10, a putative transcription factor, had recently been cloned as one of the fusion partners of MLL. CALM has a very high homology in its N-terminal third to the murine ap-3 gene which is one of the clathrin assembly proteins. The N-terminal region of ap-3 has been shown to bind to clathrin and to have a high-affinity binding site for phosphoinositols. The identification of the CALM/AF10 fusion gene in the widely used U937 cell line will contribute to our understanding of the malignant phenotype of this line.