923 resultados para Transcription Factor 7-Like 2 Protein
Resumo:
Polyomavirus enhancer activator 3 protein (Pea3), also known as ETV4, is a member of the Ets-transcription factor family, which promotes metastatic progression in various types of solid cancer. Pea3-driven epithelial-mesenchymal transition (EMT) has been described in lung and ovarian cancers. The mechanisms of Pea3-induced EMT, however, are largely unknown. Here we show that Pea3 overexpression promotes EMT in human breast epithelial cells through transactivation of Snail (SNAI1), an activator of EMT. Pea3 binds to the human Snail promoter through the two proximal Pea3 binding sites and enhances Snail expression. In addition, knockdown of Pea3 in invasive breast cancer cells results in down-regulation of Snail, partial reversal of EMT, and reduced invasiveness in vitro. Moreover, knockdown of Snail partially rescues the phenotype induced by Pea3 overexpression, suggesting that Snail is one of the mediators bridging Pea3 and EMT, and thereby metastatic progression of the cancer cells. In four breast cancer patient cohorts whose microarray and survival data were obtained from the Gene Expression Omnibus database, Pea3 and Snail expression are significantly correlated with each other and with overall survival of breast cancer patients. We further demonstrate that nuclear localization of Pea3 is associated with Snail expression in breast cancer cell lines and is an independent predictor of overall survival in a Chinese breast cancer patient cohort. In conclusion, our results suggest that Pea3 may be an important prognostic marker and a therapeutic target for metastatic progression of human breast cancer. © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
The ectrodactyly-ectodermal dysplasiaclefting syndrome is a rare autosomal dominant disorder caused by heterozygous mutations in the p63 gene, a transcription factor belonging to the p53 family. The majority of cases of ectrodactyly-ectodermal dysplasia syndrome are caused by de novo mutations and are therefore sporadic in approximately 60% of patients. The substitution of arginine to histidine (R279H), due to a c.836G>A mutation in exon 7 of the p63 gene, represents 55% of the identified mutations and is considered a mutational hot spot. A quantitative and sensitive real-time PCR was performed to quantify both wild-type and R279H alleles in DNA extracted from peripheral blood and RNA from cultured epithelial cells. Standard curves were constructed for both wild-type and mutant probes. The sensitivity of the assay was determined by generating serial dilutions of the DNA isolated from heterozygous patients (50% of alleles mutated) with wild-type DNA, thus obtaining decreasing percentages of p63 R279H mutant allele (50%, 37.5%, 25%, 12.5%, 10%, 7.5%, 5%, 2.5%, and 0.0%). The assay detected up to 1% of the mutant p63. The high sensitivity of the assay is of particular relevance to prenatal diagnosis and counseling and to detect therapeutic effects of drug treatment or gene therapy aimed at reducing the amount of mutated p63. © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Resumo:
Signal Transducers and Activators of Transcription (STAT) proteins are a group of latent cytoplasmic transcription factors involved in cytokine signaling. STAT3 is a member of the STAT family and is expressed at elevated levels in a large number of diverse human cancers and is now a validated target for anticancer drug discovery.. Understanding the dynamics of the STAT3 dimer interface, accounting for both protein-DNA and protein-protein interactions, with respect to the dynamics of the latent unphosphorylated STAT3 monomer, is important for designing potential small-molecule inhibitors of the activated dimer. Molecular dynamics (MD) simulations have been used to study the activated STAT3 homodimer:DNA complex and the latent unphosphorylated STAT3 monomer in an explicit water environment. Analysis of the data obtained from MD simulations over a 50 ns time frame has suggested how the transcription factor interacts with DNA, the nature of the conformational changes, and ways in which function may be affected. Examination of the dimer interface, focusing on the protein-DNA interactions, including involvement of water molecules, has revealed the key residues contributing to the recognition events involved in STAT3 protein-DNA interactions. This has shown that the majority of mutations in the DNA-binding domain are found at the protein-DNA interface. These mutations have been mapped in detail and related to specific protein-DNA contacts. Their structural stability is described, together with an analysis of the model as a starting-point for the discovery of novel small-molecule STAT3 inhibitors.
Resumo:
The p63 transcription factor (TP63) is critical in development, growth and differentiation of stratifying epithelia. This is highlighted by the severity of congenital abnormalities caused by TP63 mutations in humans, the dramatic phenotypes in knockout mice and de-regulation of TP63 expression in neoplasia altering the tumour suppressive roles of the TP53 family. In order to define the normal role played by TP63 and provide the basis for better understanding how this network is perturbed in disease, we used chromatin immunoprecipitation combined with massively parallel sequencing (ChIP-seq) to identify >7500 high-confidence TP63-binding regions across the entire genome, in primary human neonatal foreskin keratinocytes (HFKs). Using integrative strategies, we demonstrate that only a subset of these sites are bound by TP53 in response to DNA damage. We identify a role for TP63 in transcriptional regulation of multiple genes genetically linked to cleft palate and identify AP-2alpha (TFAP2A) as a co-regulator of a subset of these genes. We further demonstrate that AP-2gamma (TFAP2C) can bind a subset of these regions and that acute depletion of either TFAP2A or TFAP2C alone is sufficient to reduce terminal differentiation of organotypic epidermal skin equivalents, indicating overlapping physiological functions with TP63.
Resumo:
Activating mutations of the FMS-like tyrosine kinase 3 gene (FLT3) occur in approximately one-third of patients with acute myeloid leukaemia (AML) and predict for a poor outcome. Heat shock protein 90 (Hsp90) is a molecular chaperone that is frequently used by cancer cells to stabilise mutant oncoproteins. Mutant FLT3 is chaperoned by Hsp90 in primary AML blasts whereas unmutated FLT3 is not, making Hsp90 inhibitors potentially useful therapeutically. The present study showed that inhibition of Hsp90 by 17-allylamino-17-demethoxygeldanamycin (17-AAG) was cytotoxic to primary AML cells expressing mutant FLT3. Inhibition of Hsp90 results in altered downstream signalling effects in primary AML cells with disruption of Janus kinase-signal transducer and activator of transcription (JAK-STAT), mitogen-activated protein kinase and phosphatidylinositol 3/AKT signalling pathways. Co-treatment of blasts with 17-AAG and cytarabine resulted in a synergistic or additive effect in approximately 50% of AML cases tested. Our results confirm that Hsp90 is a valid molecular target in the therapy of AML. Inhibition of Hsp90 in parallel with conventional AML therapies may have particular benefit in those patients with the poor prognostic FLT3 mutant disease.
Resumo:
The excretory-secretory (ES) proteins of nematode parasites are of major interest as they function at the host-parasite interface and are likely to have roles crucial for successful parasitism. Furthermore, the ES proteins of intracellular nematodes such as Trichinella spiralis may also function to regulate gene expression in the host cell. In a recent proteomic analysis we identified a novel secreted cystatin-like protein from T. spiralis L1 muscle larva. Here we show that the protein, MCD-1 (multi-cystatin-like domain protein 1), contains three repeating cystatin-like domains and analysis of the mcd-1 gene structure suggests that the repeated domains arose from duplication of an ancestral cystatin gene. Cystatins are a diverse group of cysteine protease inhibitors and those secreted by parasitic nematodes are important immuno-modulatory factors. The cystatin superfamily also includes cystatin-like proteins that have no cysteine protease inhibitory activity. A recombinant MCD-1 protein expressed as a GST-fusion protein in Escherichia coli failed to inhibit papain in vitro suggesting that the T. spiralis protein is a new member of the non-inhibitory cystatin-related proteins. MCD-1 secreted from T. spiralis exists as high- and low-molecular weight isoforms and we show that a recombinant MCD-1 protein secreted by HeLa cells undergoes pH-dependent processing that may result in the release of individual cystatin-like domains. Furthermore, we found that mcd-1 gene expression is largely restricted to intracellular stages with the highest levels of expression in the adult worms. It is likely that the major role of the protein is during the intestinal stage of T. spiralis infections.
Resumo:
PHD finger protein 20 (PHF20) is a transcription factor, which was originally identified in glioma patients. PHF20 appears to be a novel antigen in glioma, and has also termed glioma-expressed antigen 2. PHF20 is thought to contribute to the development of cancers, including glioblastoma, lung cancer, colon cancer and ovarian cancer. However, little is known about the function of PHF20 in various cancers. Here we report that PHF20 contains two consensus sites for protein kinase B (PKB) phosphorylation (RxRxxS/T). PKB can directly phosphorylate PHF20 on Ser291 in vitro and in vivo. It has been shown that PKB participates in the tumor suppressor p53 regulated gene expression program and has a direct effect on p21 regulation after DNA damage. UV-induced DNA damage results in accumulation of p53 and PKB activation. Interestingly, PKB-mediated PHF20 phosphorylation led to an inhibition of p53 induction following UV treatment, leading to the reduction of p21 transcriptional activity. Using anti PHF20 and anti pPKB (S473) antibodies, these events were mapped in various human cancer tissues. Taken together, these data suggest that PHF20 is a novel substrate for PKB and its phosphorylation by PKB plays an important role in tumorigenesis via regulating of p53 mediated signaling. © 2012 Elsevier Inc.
Resumo:
The Runt domain transcription factor, RUNX3, has been shown to be a tumor suppressor in a variety of cancers including gastric, colon and breast cancer. Interestingly, an oncogenic role for RUNX3 has also been suggested in basal cell carcinoma and head and neck cancer. Here, we explore the role of RUNX3 in ovarian cancer.
Resumo:
Mutations that result in loss of function of Nod2, an intracellular receptor for bacterial peptidoglycan, are associated with Crohn's disease. Here we found that the E3 ubiquitin ligase Pellino3 was an important mediator in the Nod2 signaling pathway. Pellino3-deficient mice had less induction of cytokines after engagement of Nod2 and had exacerbated disease in various experimental models of colitis. Furthermore, expression of Pellino3 was lower in the colons of patients with Crohn's disease. Pellino3 directly bound to the kinase RIP2 and catalyzed its ubiquitination. Loss of Pellino3 led to attenuation of Nod2-induced ubiquitination of RIP2 and less activation of the transcription factor NF-?B and mitogen-activated protein kinases (MAPKs). Our findings identify RIP2 as a substrate for Pellino3 and Pellino3 as an important mediator in the Nod2 pathway and regulator of intestinal inflammation. © 2013 Nature America, Inc. All rights reserved.
Resumo:
The discovery of underlying mechanisms of drug resistance, and the development of novel agents to target these pathways, is a priority for patients with advanced colorectal cancer (CRC). We previously undertook a systems biology approach to design a functional genomic screen and identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of drug resistance. The aim of this study was to examine the role of FGFR4 in drug resistance using RNAi and the small-molecule inhibitor BGJ398 (Novartis). We found that FGFR4 is highly expressed at the RNA and protein levels in colon cancer tumour tissue compared with normal colonic mucosa and other tumours. Silencing of FGFR4 reduced cell viability in a panel of colon cancer cell lines and increased caspase-dependent apoptosis. A synergistic interaction was also observed between FGFR4 silencing and 5-fluorouracil (5-FU) and oxaliplatin chemotherapy in colon cancer cell lines. Mechanistically, FGFR4 silencing decreased activity of the pro-survival STAT3 transcription factor and expression of the anti-apoptotic protein c-FLIP. Furthermore, silencing of STAT3 resulted in downregulation of c-FLIP protein expression, suggesting that FGFR4 may regulate c-FLIP expression via STAT3. A similar phenotype and downstream pathway changes were observed following FGFR4 silencing in cell lines resistant to 5-FU, oxaliplatin and SN38 and upon exposure of parental cells to the FGFR small-molecule inhibitor BGJ398. Our results indicate that FGFR4 is a targetable regulator of chemo-resistance in CRC, and hence inhibiting FGFR4 in combination with 5-FU and oxaliplatin is a potential therapeutic strategy for this disease.
Resumo:
DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2.
Resumo:
Rationale:
Cathepsin S (CTSS) activity is increased in bronchoalveolar lavage (BAL) fluid from patients with cystic fibrosis (CF). This activity contributes to lung inflammation via degradation of antimicrobial proteins, such as lactoferrin and members of the β-defensin family.
Objectives:
In this study, we investigated the hypothesis that airway epithelial cells are a source of CTSS, and mechanisms underlying CTSS expression in the CF lung.
Methods:
Protease activity was determined using fluorogenic activity assays. Protein and mRNA expression were analyzed by ELISA, Western blotting, and reverse-transcriptase polymerase chain reaction.Measurements and Main Results: In contrast to neutrophil elastase, CTSS activity was detectable in 100% of CF BAL fluid samples from patients without Pseudomonas aeruginosa infection. In this study, we identified epithelial cells as a source of pulmonary CTSS activity with the demonstration that CF airway epithelial cells express and secrete significantly more CTSS than non-CF control cells in the absence of proinflammatory stimulation. Furthermore, levels of the transcription factor IRF-1 correlated with increased levels of its target gene CTSS. We discovered that miR-31, which is decreased in the CF airways, regulates IRF-1 in CF epithelial cells. Treating CF bronchial epithelial cells with a miR-31 mimic decreased IRF-1 protein levels with concomitant knockdown of CTSS expression and secretion.
Conclusions:
The miR-31/IRF-1/CTSS pathway may play a functional role in the pathogenesis of CF lung disease and may open up new avenues for exploration in the search for an effective therapeutic target.
Resumo:
Robust, bilayer heterojunction photodiodes of TiO2-WO3 were prepared successfully by a simple, low-cost powder pressing technique followed by heat-treatment. Exclusive photoirradiation of the TiO2 side of the photodiode resulted in a rapid colour change (dark blue) on the WO3 surface as a result of reduction of W6+ to W5+ (confirmed by X-ray photoelectron spectroscopy). This colour was long lived and shown to be stable in a dry environment in air for several hours. A similar photoirradiation experiment in the presence of a mask showed that charge transfer across the heterojunction occurred approximately normal to the TiO2 surface, with little smearing out of the mask image. As a result of the highly efficient vectorial charge separation, the photodiodes showed a tremendous increase in photocatalytic activity for the degradation of stearic acid, compared to wafers of the respective individual materials when tested separately.
Resumo:
Objective: Diabetic nephropathy (DN) is a microvascular complication of diabetes. Members of the WNT/ β-catenin pathways have been implicated in interstitial fibrosis and glomerular sclerosis, characteristic hallmarks of DN. These processes are controlled, in part, by transcription factors (TFs), proteins which bind to gene promoter regions attenuating their regulation. We sought to identify predicted cis-acting transcription factor binding sites (TFBS) over-represented within the promoter regions of WNT pathway members compared to genes across the genome.Methods: We assessed the frequency of 62 TFBS motifs from the JASPAR databases on 65 WNT pathway genes. P-values were estimated on the hypergeometric distribution for each TF. Gene expression profiles of enriched motifs were examined from DN-related datasets to assess clinical significance.Results: TFBS motifs transcription factor AP-2 alpha (TFAP2A), myeloid zinc finger 1 (MZF1), and specificity protein 1 (SP1) were significantly enriched within WNT pathway genes (P-values<6.83x10-29, 1.34x10-11 and 3.01x10-6 respectively). MZF1 gene expression was significantly increased in DN in a whole kidney dataset (fold change = 1.16; 16% increase; P = 0.03). TFAP2A gene expression was decreased in an independent dataset (fold change = -1.02; P = 0.03). SP1 was not differentially expressed in any datasets examined.Conclusions: Three TFBS profiles are significantly enriched within the WNT pathway genes examined highlighting the use of in silico analyses for identifying key regulators of this pathway. Modification of TF binding to gene promoter regions involved in DN pathology may limit progression, making refinement of targeted therapeutic strategies possible through clearer delineation of their role.
Resumo:
The mitogen-activated protein (MAP) kinase family is activated in response to a wide variety of external stress signals such as UV irradiation, heat shock, and many chemotherapeutic drugs and leads to the induction of apoptosis. A novel series of pyrrolo-1,5-benzoxazepines have been shown to potently induce apoptosis in chronic myelogenous leukemia (CML) cells, which are resistant to many chemotherapeutic agents. In this study we have delineated part of the mechanism by which a representative compound known as PBOX-6 induces apoptosis. We have investigated whether PBOX-6 induces activation of MAP kinase signaling pathways in CML cells. Treatment of K562 cells with PBOX-6 resulted in the transient activation of two JNK isoforms, JNK1 and JNK2. In contrast, PBOX-6 did not activate the extracellular signal-regulated kinase (ERK) or p38. Apoptosis was found to occur independently of the small GTPases Ras, Rac, and Cdc42 but involved phosphorylation of the JNK substrates, c-Jun and ATF-2. Pretreatment of K562 cells with the JNK inhibitor, dicoumarol, abolished PBOX-6-induced phosphorylation of c-Jun and ATF-2 and inhibited the induced apoptosis, suggesting that JNK activation is an essential component of the apoptotic pathway induced by PBOX-6. Consistent with this finding, transfection of K562 cells with the JNK scaffold protein, JIP-1, inhibited JNK activity and apoptosis induced by PBOX-6. JIP-1 specifically scaffolds JNK, MKK7, and members of the mixed-lineage kinase (MLK) family, implicating these kinases upstream of JNK in the apoptotic pathway induced by PBOX-6 in K562 cells.