980 resultados para Tracer coupling
Resumo:
Intriguing lattice dynamics has been predicted for aperiodic crystals that contain incommensurate substructures. Here we report inelastic neutron scattering measurements of phonon and magnon dispersions in Sr14Cu24O41, which contains incommensurate one-dimensional (1D) chain and two-dimensional (2D) ladder substructures. Two distinct acoustic phonon-like modes, corresponding to the sliding motion of one sublattice against the other, are observed for atomic motions polarized along the incommensurate axis. In the long wavelength limit, it is found that the sliding mode shows a remarkably small energy gap of 1.7-1.9 meV, indicating very weak interactions between the two incommensurate sublattices. The measurements also reveal a gapped and steep linear magnon dispersion of the ladder sublattice. The high group velocity of this magnon branch and weak coupling with acoustic phonons can explain the large magnon thermal conductivity in Sr14Cu24O41 crystals. In addition, the magnon specific heat is determined from the measured total specific heat and phonon density of states, and exhibits a Schottky anomaly due to gapped magnon modes of the spin chains. These findings offer new insights into the phonon and magnon dynamics and thermal transport properties of incommensurate magnetic crystals that contain low-dimensional substructures.
Resumo:
The primary focus of this thesis was the development of a novel chiral tether that could be used to control axial chirality around a newly formed aryl-aryl bond, and the extension of this methodology to the model synthesis of gomisin M1. In chapter 1, a review detailing the use of chiral tethers in the synthesis of atropisomers is discussed. The use of a variety of chiral molecules including 1,2-diols, 1,3-diols and other diol-based tethers, as well as amine-based and miscellaneous tethers are detailed. In chapter 2, the rationale behind the design of our novel molecular tethers, along with the subsequent synthesis of three chiral 1,3-diol-based tethers, is outlined. The method by which the enantiopurity of these diols was determined is also reviewed. This chapter also includes the attempted Mitsunobu and intramolecular couplings in the model synthesis of BINOL. Chapter 3 discusses the synthesis of suitable aryl halide substrates, and their employment in the attempted tether-controlled asymmetric model synthesis of gomisin M1. A comprehensive investigation into the attempted intramolecular biaryl coupling of these tethered substrates is also included. The non-stereoselective model synthesis of gomisin M1 is outlined in chapter 4. The installation of the desired biaryl linkage and the subsequent attempted intramolecular McMurry couplings are discussed. The impact of different protecting groups in the molecule on the intramolecular McMurry reaction is also outlined. Chapter 5 details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research.
Resumo:
This thesis describes an investigation in which we compare Ni(0), Ni(I) and Ni(II) complexes containing 1,3-bis(diphenylphosphino)propane (dppp) as a phosphine ligand for their abilities to effect three types of cross-coupling reactions: Buchwald-Hartwig Amination, Heck-Mizoroki, and Suzuki-Miyaura cross-coupling reactions with different types of substrates. The Ni(0) complex Ni(dppp)2 is known and we have synthesized it via a new procedure involving zinc reduction of the known NiCl2(dppp) in the presence of an excess of dppp. The Ni(0) complex was characterized by NMR spectroscopy and X-ray crystallography. Since Ni(I) complexes of dppp seem unknown, we have synthesized what at this stage appear to be NiXdpppn/[NiX(dppp)n]x (X = Cl, Br, I; n = 1,2, x = 1, 2) by comproportionation of molar equivalents of Ni(dppp)2 and NiX2dppp, X= Cl, Br, I.
Resumo:
This paper presents novel ultra-compact waveguide bandpass filters that exhibit pseudo elliptic responses with ability to place transmission zeros on both sides of the passband to form sharp roll offs. The filters contain E plane extracted pole sections cascaded with cross-coupled filtering blocks. Compactness is achieved by the use of evanescent mode sections and closer arranged resonators modified to shrink in size. The filters containing non-resonating nodes are designed by means of the generalized coupling coefficients (GCC) extraction procedure for the cross-coupled filtering blocks and extracted pole sections. We illustrate the performance of the proposed structures through the design examples of a third and a fourth order filters with center frequencies of 9.2 GHz and 10 GHz respectively. The sizes of the proposed structures suitable for fabricating using the low cost E plane waveguide technology are 38% smaller than ones of the E plane extracted pole filter of the same order.
Resumo:
Ground-source heat pump (GSHP) systems represent one of the most promising techniques for heating and cooling in buildings. These systems use the ground as a heat source/sink, allowing a better efficiency thanks to the low variations of the ground temperature along the seasons. The ground-source heat exchanger (GSHE) then becomes a key component for optimizing the overall performance of the system. Moreover, the short-term response related to the dynamic behaviour of the GSHE is a crucial aspect, especially from a regulation criteria perspective in on/off controlled GSHP systems. In this context, a novel numerical GSHE model has been developed at the Instituto de Ingeniería Energética, Universitat Politècnica de València. Based on the decoupling of the short-term and the long-term response of the GSHE, the novel model allows the use of faster and more precise models on both sides. In particular, the short-term model considered is the B2G model, developed and validated in previous research works conducted at the Instituto de Ingeniería Energética. For the long-term, the g-function model was selected, since it is a previously validated and widely used model, and presents some interesting features that are useful for its combination with the B2G model. The aim of the present paper is to describe the procedure of combining these two models in order to obtain a unique complete GSHE model for both short- and long-term simulation. The resulting model is then validated against experimental data from a real GSHP installation.
Resumo:
TORT, A. B. L. ; SCHEFFER-TEIXEIRA, R ; Souza, B.C. ; DRAGUHN, A. ; BRANKACK, J. . Theta-associated high-frequency oscillations (110-160 Hz) in the hippocampus and neocortex. Progress in Neurobiology , v. 100, p. 1-14, 2013.
Resumo:
Recent studies show that higher order oscillatory interactions such as cross-frequency coupling are important for brain functions that are impaired in schizophrenia, including perception, attention and memory. Here we investigated the dynamics of oscillatory coupling in the hippocampus of awake rats upon NMDA receptor blockade by ketamine, a pharmacological model of schizophrenia. Ketamine (25, 50 and 75 mg/kg i.p.) increased gamma and high-frequency oscillations (HFO) in all depths of the CA1-dentate axis, while theta power changes depended on anatomical location and were independent of a transient increase of delta oscillations. Phase coherence of gamma and HFO increased across hippocampal layers. Phase-amplitude coupling between theta and fast oscillations was markedly altered in a dose-dependent manner: ketamine increased hippocampal theta-HFO coupling at all doses, while theta-gamma coupling increased at the lowest dose and was disrupted at the highest dose. Our results demonstrate that ketamine alters network interactions that underlie cognitively relevant theta-gamma coupling.
Resumo:
Found in the nature in form different, the iodine has been used in diverse works in the area of the industry and health. The iodine is very unstable and volatile in the ambient temperature and the I2 is one of the diverse gaseous forms found. In this work was developed methodology for production of gaseous tracer from the sodium iodide (NaI) 0,1 M marked with 123I. The synthesis was processed with in chlorine acid (HCl) 1M and sodium iodate salt (NaIO3). The production of gas I2 initially was carried through in unit of glass with the inert material and the purpose was to study the kinetic of reaction. The synthesis occurs in the reaction bottle and the produced gas is stored in the collect bottle that contains a starch solution (5 g/100 mL water). To determine the efficiency of production of gas I2, analytic tests had been carried through, where the consumption of iodide ions of the bottle of reaction is measured. The optimization of production of the gaseous tracer was studied varying parameters as: concentration of iodide and iodate, concentration of acid and temperature. Then, the synthesis of the radiotracer was realized in the compact unit, being utilized as main reagent the salt radiated of sodium iodide, Na123I. The transportation of elementary iodine was studied by a scintillation detector NaI (2 x 2)” placed in the reaction bottle. To acquire the data, the detector use a set of electronic modules for the acquisition of signals generated.
Resumo:
Human-environment connections are the subject of much study, and the details of those connections are crucial factors in effective environmental management. In a large, interdisciplinary study of the eastern Bering Sea ecosystem involving disciplines from physical oceanography to anthropology, one of the research teams examined commercial fisheries and another looked at subsistence harvests by Alaska Natives. Commercial fisheries and subsistence harvests are extensive, demonstrating strong connections between the ecosystem and the humans who use it. At the same time, however, both research teams concluded that the influence of ecosystem conditions on the outcomes of human activities was weaker than anticipated. Likely explanations of this apparently loose coupling include the ability of fishers and hunters to adjust to variable conditions, and the role of social systems and management in moderating the direct effects of changes in the ecosystem. We propose a new conceptual model for future studies that incorporates a greater range of social factors and their dynamics, in addition to similarly detailed examinations of the ecosystem itself.
Resumo:
Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.
Resumo:
The work presented in this thesis is concerned with the dynamical behavior of a CBandola's acoustical box at low resonances -- Two models consisting of two and three coupled oscillators are proposed in order to analyse the response at the first two and three resonances, respectively -- These models describe the first resonances in a bandola as a combination of the lowest modes of vibration of enclosed air, top and back plates -- Physically, the coupling between these elements is caused by the fluid-structure interaction that gives rise to coupled modes of vibration for the assembled resonance box -- In this sense, the coupling in the models is expressed in terms of the ratio of effective areas and masses of the elements which is an useful parameter to control the coupling -- Numerical models are developed for the analysis of modal coupling which is performed using the Finite Element Method -- First, it is analysed the modal behavior of separate elements: enclosed air, top plate and back plate -- This step is important to identify participating modes in the coupling -- Then, a numerical model of the resonance box is used to compute the coupled modes -- The computation of normal modes of vibration was executed in the frequency range of 0-800Hz -- Although the introduced models of coupled oscillators only predict maximum the first three resonances, they also allow to study qualitatively the coupling between the rest of the computed modes in the range -- Considering that dynamic response of a structure can be described in terms of the modal parameters, this work represents, in a good approach, the basic behavior of a CBandola, although experimental measurements are suggested as further work to verify the obtained results and get more information about some characteristics of the coupled modes, for instance, the phase of vibration of the air mode and the radiation e ciency
Resumo:
The role of computer modeling has grown recently to integrate itself as an inseparable tool to experimental studies for the optimization of automotive engines and the development of future fuels. Traditionally, computer models rely on simplified global reaction steps to simulate the combustion and pollutant formation inside the internal combustion engine. With the current interest in advanced combustion modes and injection strategies, this approach depends on arbitrary adjustment of model parameters that could reduce credibility of the predictions. The purpose of this study is to enhance the combustion model of KIVA, a computational fluid dynamics code, by coupling its fluid mechanics solution with detailed kinetic reactions solved by the chemistry solver, CHEMKIN. As a result, an engine-friendly reaction mechanism for n-heptane was selected to simulate diesel oxidation. Each cell in the computational domain is considered as a perfectly-stirred reactor which undergoes adiabatic constant- volume combustion. The model was applied to an ideally-prepared homogeneous- charge compression-ignition combustion (HCCI) and direct injection (DI) diesel combustion. Ignition and combustion results show that the code successfully simulates the premixed HCCI scenario when compared to traditional combustion models. Direct injection cases, on the other hand, do not offer a reliable prediction mainly due to the lack of turbulent-mixing model, inherent in the perfectly-stirred reactor formulation. In addition, the model is sensitive to intake conditions and experimental uncertainties which require implementation of enhanced predictive tools. It is recommended that future improvements consider turbulent-mixing effects as well as optimization techniques to accurately simulate actual in-cylinder process with reduced computational cost. Furthermore, the model requires the extension of existing fuel oxidation mechanisms to include pollutant formation kinetics for emission control studies.