921 resultados para Totally absolute horospherical curvature
Resumo:
We present the stellar calibrator sample and the conversion from instrumental to physical units for the 24 μm channel of the Multiband Imaging Photometer for Spitzer (MIPS). The primary calibrators are A stars, and the calibration factor based on those stars is 4.54 × 10^-2 MJy sr^–1 (DN/s)^–1, with a nominal uncertainty of 2%. We discuss the data reduction procedures required to attain this accuracy; without these procedures, the calibration factor obtained using the automated pipeline at the Spitzer Science Center is 1.6% ± 0.6% lower. We extend this work to predict 24 μm flux densities for a sample of 238 stars that covers a larger range of flux densities and spectral types. We present a total of 348 measurements of 141 stars at 24 μm. This sample covers a factor of ~460 in 24 μm flux density, from 8.6 mJy up to 4.0 Jy. We show that the calibration is linear over that range with respect to target flux and background level. The calibration is based on observations made using 3 s exposures; a preliminary analysis shows that the calibration factor may be 1% and 2% lower for 10 and 30 s exposures, respectively. We also demonstrate that the calibration is very stable: over the course of the mission, repeated measurements of our routine calibrator, HD 159330, show a rms scatter of only 0.4%. Finally, we show that the point-spread function (PSF) is well measured and allows us to calibrate extended sources accurately; Infrared Astronomy Satellite (IRAS) and MIPS measurements of a sample of nearby galaxies are identical within the uncertainties.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
A Finsler space is said to be geodesically reversible if each oriented geodesic can be reparametrized as a geodesic with the reverse orientation. A reversible Finsler space is geodesically reversible, but the converse need not be true. In this note, building on recent work of LeBrun and Mason, it is shown that a geodesically reversible Finsler metric of constant flag curvature on the 2-sphere is necessarily projectively flat. As a corollary, using a previous result of the author, it is shown that a reversible Finsler metric of constant flag curvature on the 2-sphere is necessarily a Riemannian metric of constant Gauss curvature, thus settling a long- standing problem in Finsler geometry.
Resumo:
Bacterial tubulin homolog FtsZ assembles straight protofilaments (pfs) that form the scaffold of the cytokinetic Z ring. These pfs can adopt a curved conformation forming a miniring or spiral tube 24 nm in diameter. Tubulin pfs also have a curved conformation, forming 42 nm tubulin rings. We have previously provided evidence that FtsZ generates a constriction force by switching from straight pfs to the curved conformation, generating a bending force on the membrane. In the simplest model the membrane tether, which exits from the C terminus of the globular FtsZ, would have to be on the outside of the curved pf. However, it is well established that tubulin rings have the C terminus on the inside of the ring. Could FtsZ and tubulin rings have the opposite curvature? In the present study we explored the direction of curvature of FtsZ rings by fusing large protein tags to the N or C terminus of the FtsZ globular domain. FtsZ with a protein tag on the N terminus did not assemble tubes. This was expected if the N terminus is on the inside, because the protein tags are too big to fit in the interior of the tube. FtsZ with C-terminal tags assembled normal tubes, consistent with the C terminus on the outside. The FN extension was not visible in negative stain, but thin section EM gave definitive evidence that the C-terminal tag was on the outside of the tubes. This has interesting implications for the evolution of tubulin. It seems likely that tubulin began with the curvature of FtsZ, which would have resulted in pfs curving toward the interior of a disassembling MT. Evolution not only eliminated this undesirable curvature, but managed to reverse direction to produce the outward curving rings, which is useful for pulling chromosomes.
Resumo:
Objective: To estimate the absolute treatment effect of statin therapy on major adverse cardiovascular events (MACE; myocardial infarction, stroke and vascular death) for the individual patient aged C70 years. Methods: Prediction models for MACE were derived in patients aged C70 years with (n = 2550) and without (n = 3253) vascular disease from the ‘‘PROspective Study of Pravastatin in Elderly at Risk’’ (PROSPER) trial and validated in the ‘‘Secondary Manifestations of ARTerial disease’’ (SMART) cohort study (n = 1442) and the ‘‘Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm’’ (ASCOT-LLA) trial (n = 1893), respectively, using competing risk analysis. Prespecified predictors were various clinical characteristics including statin treatment. Individual absolute risk reductions (ARRs) for MACE in 5 and 10 years were estimated by subtracting ontreatment from off-treatment risk. Results: Individual ARRs were higher in elderly patients with vascular disease [5-year ARRs: median 5.1 %, interquartile range (IQR) 4.0–6.2 %, 10-year ARRs: median 7.8 %, IQR 6.8–8.6 %] than in patients without vascular disease (5-year ARRs: median 1.7 %, IQR 1.3–2.1 %, 10-year ARRs: 2.9 %, IQR 2.3–3.6 %). Ninetyeight percent of patients with vascular disease had a 5-year ARR C2.0 %, compared to 31 % of patients without vascular disease. Conclusions: With a multivariable prediction model the absolute treatment effect of a statin on MACE for individual elderly patients with and without vascular disease can be quantified. Because of high ARRs, treating all patients is more beneficial than prediction-based treatment for secondary prevention of MACE. For primary prevention of MACE, the prediction model can be used to identify those patients who benefit meaningfully from statin therapy.