972 resultados para Titanium oxides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although many gold heterogeneous catalysts have been shown to exhibit significant activity and high selectivity for a wide range of reactions in both the liquid and gas phases, they are prone to irreversible deactivation. This is often associated with sintering or loss of the interaction of the gold with the support. Herein, we report on the use of methyl iodide as a method of dispersing gold nanoparticles supported on silica, titania, and alumina supports. In the case of titania- and alumina-based catalysts, the gold was transformed from nanometer particles into small clusters and some atomically dispersed gold. In contrast, although there was a drop in the gold particle size on the silica support following CH3I treatment, the size remained in the submicrometer range. The structural changes were correlated with changes in the selectivity and activity for ethanol dehydration and benzyl alcohol oxidation. From these observations, it is clear that this treatment provides a method by which deactivated gold catalysts can be reactivated via redispersion of the gold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through an analysis on microstructure and high cycle fatigue (HCF) properties of Ti-6Al-4V alloys which were selected from literature, the effects of microstructure types and microstructure parameters on HCF properties were investigated systematically. The results show that the HCF properties are strongly determined by microstructure types for Ti-6Al-4V. Generally the HCF strengths of different microstructures decrease in the order of bimodal, lamellar and equiaxed microstructure. Additionally, microstructure parameters such as the primary a (a) content and the a grain size in bimodal microstructures, the a lamellar width in lamellar microstructure and the a grain size in equiaxed microstructures, can influence the HCF properties. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoscale electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO2 and SrTiO3 thin films are observed using scanning probe microscopy. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Landau-Ginzburg-Devonshire (LGD) theory. The possible origins of electromechanical coupling including ionic dynamics, surface-charge induced electrostriction, and ionically induced ferroelectricity are identified. For the latter, the ionic contribution can change the sign of first order LGD expansion coefficient, rendering material effectively ferroelectric. The lifetime of these ionically induced ferroelectric states is then controlled by the transport time of the mobile ionic species and well above that of polarization switching. These studies provide possible explanation for ferroelectric-like behavior in centrosymmetric transition metal oxides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterogeneous catalytic oxidation of a series of thioethers (2-thiomethylpyrimidine, 2-thiomethyl-4,6-dimethyl-pyrimidine, 2-thiobenzylpyrimidine, 2-thiobenzyl-4,6-dimethylpyrimidine, thioanisole, and n-heptyl methyl sulfide) was performed in ionic liquids by using MCM-41 and UVM-type mesoporous catalysts containing Ti, or Ti and Ge. A range of triflate, tetrafluoroborate, trifluoroacetate, lactate and bis(trifluoromethanesulfonyl)imide-based ionic liquids were used. The oxidations were carried out by using anhydrous hydrogen peroxide or the urea-hydrogen peroxide adduct and showed that ionic liquids are very effective solvents, achieving greater reactivity and selectivity than reactions performed in dioxane. The effects of halide and acid impurities on the reactions were also investigated. Recycling experiments on catalysts were carried out in order to evaluate Ti leaching and its effect on activity and selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co3O4, Fe2O3 and a mixture of the two oxides Co–Fe (molar ratio of Co3O4/Fe2O3 = 0.67 and atomic ratio of Co/Fe = 1) were prepared by the calcination of cobalt oxalate and/or iron oxalate salts at 500 °C for 2 h in static air using water as a solvent/dispersing agent. The catalysts were studied in the steam reforming of ethanol to investigate the effect of the partial substitution of Co3O4 with Fe2O3 on the catalytic behaviour. The reforming activity over Fe2O3, while initially high, underwent fast deactivation. In comparison, over the Co–Fe catalyst both the H2 yield and stability were higher than that found over the pure Co3O4 or Fe2O3 catalysts. DRIFTS-MS studies under the reaction feed highlighted that the Co–Fe catalyst had increased amounts of adsorbed OH/water; similar to Fe2O3. Increasing the amount of reactive species (water/OH species) adsorbed on the Co–Fe catalyst surface is proposed to facilitate the steam reforming reaction rather than decomposition reactions reducing by-product formation and providing a higher H2 yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous titanium samples were manufactured using the 3D printing and sintering method in order to determine the effects of final sintering temperature on morphology and mechanical properties. Cylindrical samples were printed and split into groups according to a final sintering temperature (FST). Irregular geometry samples were also printed and split into groups according to their FST. The cylindrical samples were used to determine part shrinkage, in compressive tests to provide stress-strain data, in microCT scans to provide internal morphology data and for optical microscopy to determine surface morphology. All of the samples were used in microhardness testing to establish the hardness. Below 1100 C FST, shrinkage was in the region of 20% but increased to approximately 30% by a FST of 1300 C. Porosity varied from a maximum of approximately 65% at the surface to the region of 30% internally. Between 97 and 99% of the internal porosity is interconnected. Average pore size varied between 24 µm at the surface and 19 µm internally. Sample hardness increased to in excess of 300 HV0.05 with increasing FST while samples with an FST of below 1250 C produced an elastic-brittle stress/strain curve and samples above this displayed elastic-plastic behaviour. Yield strength increased significantly through the range of sintering temperatures while the Young's modulus remained fairly consistent. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enantiopure cis-dihydrodiol bacterial metabolites of substituted benzene substrates were used as precursors, in a chemoenzymatic synthesis of the corresponding benzene oxides and of a substituted oxepine, via dihydrobenzene oxide intermediates. A rapid total racemization of the substituted benzene 2,3-oxides was found to have occurred, via their oxepine valence tautomers, in accord with predictions and theoretical calculations. Reduction of a substituted arene oxide to yield a racemic arene hydrate was observed. Arene hydrates have also been synthesised, in enantiopure form, from the corresponding dihydroarene oxide or trans-bromoacetate precursors. Biotransformation of one arene hydrate enantiomer resulted in a toluene-dioxygenase catalysed cis-dihydroxylation to yield a benzene cis-triol metabolite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrrolizidine alkaloids (PAs) are a group of plant secondary metabolites with carcinogenic and hepatotoxic properties. When PA-producing plants contaminate crops, toxins can be transferred through the food chain and cause illness in humans and animals, most notably hepatic veno-occlusive disease. Honey has been identified as a direct risk of human exposure. The European Food Safety Authority has recently identified four groups of PAs that are of particular importance for food and feed: senecionine-type, lycopsamine-type, heliotrine-type and monocrotaline-type. Liquid or gas chromatography methods are currently used to detect PAs but there are no rapid screening assays available commercially. Therefore, the aim of this study was to develop a rapid multiplex ELISA test for the representatives of three groups of alkaloids (senecionine, lycopsamine and heliotrine types) that would be used as a risk-management tool for the screening of these toxic compounds in food and feed. The method was validated for honey and feed matrices and was demonstrated to have a detection capability less than 25 µg/kg for jacobine, lycopsamine, heliotrine and senecionine. The zinc reduction step introduced to the extraction procedure allows for the additional detection of the presence of N-oxides of PAs. This first multiplex immunoassay for PA detection with N-oxide reduction can be used for the simultaneous screening of 21 samples for >12 PA analytes. Honey samples (n?=?146) from various origins were analysed for PA determination. Six samples were determined to contain measurable PAs >25 µg/kg by ELISA which correlated to >10 µg/kg by LC-MS/MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drilling is a highly demanding machining process due to complex tool geometry and the progressive material failure on the work piece. In this study, a 3D model is developed using commercial finite element software ABAQUS/Explicit. The proposed model simulates the drilling process by taking into account of the damage initiation and evolution of the work piece material, a contact model at the interface between drill bit and work piece and the process parameters. The results of the simulations demonstrate the effects of machining parameters on drilling. The results also confirm the capability and advantage of FE simulation of the drilling process. © 2011 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research we investigate the performance of drilling process in carbon fibre reinforced composite (CFC) material, titanium alloy and the hybrid stack of these two materials, using coated carbide drill bit. We study the effect of the process parameters such as the feed rate and speed on the induced forces and torques, also on the wear of drill and surface roughness of the holes. In the composite material the percentage of surface damage in both drilling CFC on its own and drilling in stack form is estimated. Also, the effect of worn drill on the surface damage is identified. In the titanium, the burr formation in stack and non-stack form is investigated. The wear of the drill results in increased forces and torques required for drilling. This increases the surface delaminations substantially at the entrance in drilling of CFC. However, the surface roughness of the holes reduces with the wear of the drill in CFC drilling. Also, the surface delamination and surface roughness of the holes in the CFC whilst drilled in hybrid form reduces significantly. This is despite the increase of the forces and torques required in drilling CFC in stack form. Copyright © 2012 Inderscience Enterprises Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of cylindrical porous titanium test samples were produced using the three-dimensional printing and sintering method with samples sintered at 900 °C, 1000 °C, 1100 °C, 1200 °C or 1300 °C. Following compression testing, it was apparent that the stress-strain curves were similar in shape to the curves that represent cellular solids. This is despite a relative density twice as high as what is considered the threshold for defining a cellular solid. As final sintering temperature increased, the compressive behaviour developed from being elastic-brittle to elastic-plastic and while Young's modulus remained fairly constant in the region of 1.5 GPa, there was a corresponding increase in 0.2% proof stress of approximately 40-80 MPa. The cellular solid model consists of two equations that predict Young's modulus and yield or proof stress. By fitting to experimental data and consideration of porous morphology, appropriate changes to the geometry constants allow modification of the current models to predict with better accuracy the behaviour of porous materials with higher relative densities (lower porosity).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of hybrid materials including carbon fiber reinforced plastics (CFRPs) and lightweight metals such as titanium are increasing particularly in aerospace applications. Multi-material stacks require a number of holes for the assembly purposes. In this research, drilling trials have been carried out in CFRP, Ti-6Al-4V and CFRP/Ti-6Al-4V stack workpieces using AlTiN coated tungsten carbide drill bit. The effects of process parameters have been investigated. The thrust force, torque, burr formation, delamination, surface roughness and tool wear have been analyzed at various processing condition. The experimental results have shown that the thrust force, torque, burr formation and the average surface roughness increase with the increased feed rate and decrease with the increased cutting speed in drilling of Ti-6Al-4V. In drilling CFRP, delamination and the average surface roughness has similar tendency with the cutting parameters however thrust force and torque rises with the increased cutting speed. The results showed that after making 15 holes in CFRP/Ti-6Al-4V stack, measured thrust forces were increased by 20% in CFRP and by 45% in Ti-6Al-4V. Delamination was found to be much smaller in drilling of CFRP in stack from compared to drilling single CFRP. Tool life was significantly shortened in drilling of stack due to the combination of the wear mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the possibility of optimising 3D Organised Mesoporous Silica (OMS) coated with both iron and aluminium oxides for the optimal removal of As(III) and As(V) from synthetic contaminated water. The materials developed were fully characterised and were tested for removing arsenic in batch experiments. The effect of total Al to Fe oxides coating on the selective removal of As(III) and As(V) was studied. It was shown that 8% metal coating was the optimal configuration for the coated OMS materials in removing arsenic. The effect of arsenic initial concentration and pH, kinetics and diffusion mechanisms was studied, modelled and discussed. It was shown that the advantage of an organised material over an un-structured sorbent was very limited in terms of kinetic and diffusion under the experimental conditions. It was shown that physisorption was the main adsorption process involved in As removal by the coated OMS. Maximum adsorption capacity of 55 mg As(V).g-1 was noticed at pH 5 for material coated with 8% Al oxides while 35 mg As(V).g-1 was removed at pH 4 for equivalent material coated with Fe oxides.