970 resultados para Tissue Analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective transcript profiling in animal systems requires isolation of homogenous tissue or cells followed by faithful mRNA amplification. Linear amplification based on cDNA synthesis and in vitro transcription is reported to maintain representation of mRNA levels, however, quantitative data demonstrating this as well as a description of inherent limitations is lacking. We show that published protocols produce a template-independent product in addition to amplifying real target mRNA thus reducing the specific activity of the final product. We describe a modified amplification protocol that minimizes the generation of template-independent product and can therefore generate the desired microgram quantities of message-derived material from 100 ng of total RNA. Application of a second, nested round of cDNA synthesis and in vitro transcription reduces the required starting material to 2 ng of total RNA. Quantitative analysis of these products on Caenorhabditis elegans Affymetrix GeneChips shows that this amplification does not reduce overall sensitivity and has only minor effects on fidelity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two cellular retinol-binding proteins (CRBP I and II) with distinct tissue distributions and retinoid-binding properties have been recognized thus far in mammals. Here, we report the identification of a human retinol-binding protein resembling type I (55.6% identity) and type II (49.6% identity) CRBPs, but with a unique H residue in the retinoid-binding site and a distinctively different tissue distribution. Additionally, this binding protein (CRBP III) exhibits a remarkable sequence identity (62.2%) with the recently identified ι-crystallin/CRBP of the diurnal gecko Lygodactylus picturatus [Werten, P. J. L., Röll, B., van Alten, D. M. F. & de Jong, W. W. (2000) Proc. Natl. Acad. Sci. USA 97, 3282–3287 (First Published March 21, 2000; 10.1073/pnas.050500597)]. CRBP III and all-trans-retinol form a complex (Kd ≈ 60 nM), the absorption spectrum of which is characterized by the peculiar fine structure typical of the spectra of holo-CRBP I and II. As revealed by a 2.3-Å x-ray molecular model of apo-CRBP III, the amino acid residues that line the retinol-binding site in CRBP I and II are positioned nearly identically in the structure of CRBP III. At variance with the human CRBP I and II mRNAs, which are most abundant in ovary and intestine, respectively, the CRBP III mRNA is expressed at the highest levels in kidney and liver thus suggesting a prominent role for human CRBP III as an intracellular mediator of retinol metabolism in these tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA was extracted from three fecal samples, more than 2,000 years old, from Hinds Cave, Texas. Amplification of human mtDNA sequences showed their affiliation with contemporary Native Americans, while sequences from pronghorn antelope, bighorn sheep, and cottontail rabbit allowed these animals to be identified as part of the diet of these individuals. Furthermore, amplification of chloroplast DNA sequences identified eight different plants as dietary elements. These archaic humans consumed 2–4 different animal species and 4–8 different plant species during a short time period. The success rate for retrieval of DNA from paleofeces is in strong contrast to that from skeletal remains where the success rate is generally low. Thus, human paleofecal remains represent a source of ancient DNA that significantly complements and may in some cases be superior to that from skeletal tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphoenolpyruvate carboxylase (PEPC) activity was detected in aleurone-endosperm extracts of barley (Hordeum vulgare) seeds during germination, and specific anti-sorghum (Sorghum bicolor) C4 PEPC polyclonal antibodies immunodecorated constitutive 103-kD and inducible 108-kD PEPC polypeptides in western analysis. The 103- and 108-kD polypeptides were radiolabeled in situ after imbibition for up to 1.5 d in 32P-labeled inorganic phosphate. In vitro phosphorylation by a Ca2+-independent PEPC protein kinase (PK) in crude extracts enhanced the enzyme's velocity and decreased its sensitivity to l-malate at suboptimal pH and [PEP]. Isolated aleurone cell protoplasts contained both phosphorylated PEPC and a Ca2+-independent PEPC-PK that was partially purified by affinity chromatography on blue dextran-agarose. This PK activity was present in dry seeds, and PEPC phosphorylation in situ during imbibition was not affected by the cytosolic protein-synthesis inhibitor cycloheximide, by weak acids, or by various pharmacological reagents that had proven to be effective blockers of the light signal transduction chain and PEPC phosphorylation in C4 mesophyll protoplasts. These collective data support the hypothesis that this Ca2+-independent PEPC-PK was formed during maturation of barley seeds and that its presumed underlying signaling elements were no longer operative during germination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) “plant-defense” response were investigated in anthracnose-resistant and -susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1-colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ricinosome (synonym, precursor protease vesicle) is a novel organelle, found so far exclusively in plant cells. Electron microscopic studies suggest that it buds off from the endoplasmic reticulum in senescing tissues. Biochemical support for this unusual origin now comes from the composition of the purified organelle, which contains large amounts of a 45-kDa cysteine endoprotease precursor with a C-terminal KDEL motif and the endoplasmic reticulum lumen residents BiP (binding protein) and protein disulfide isomerase. Western blot analysis, peptide sequencing, and mass spectrometry demonstrate retention of KDEL in the protease proform. Acidification of isolated ricinosomes causes castor bean cysteine endopeptidase activation, with cleavage of the N-terminal propeptide and the C-terminal KDEL motif. We propose that ricinosomes accumulate during senescence by programmed cell death and are activated by release of protons from acidic vacuoles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isolation of thionein (T) from tissues has not been reported heretofore. T contains 20 cysteinyl residues that react with 7-fluorobenz-2-oxa-1,3-diazole-4-sulfonamide to form fluorescent adducts. In metallothionein (MT) the cysteinyl residues, which are bound to zinc, do not react. However, they do react in the presence of a chelating agent such as EDTA. The resultant difference in chemical reactivity provides a means to measure T in the absence of EDTA, (MT + T) in its presence, and, of course, MT by difference. The 7-fluorobenz-2-oxa-1,3-diazole-4-sulfonamide derivative of T can be isolated from tissue homogenates by HPLC and quantified fluorimetrically with a detection limit in the femtomolar range and a linear response over 3 orders of magnitude. Analysis of liver, kidney, and brain of rats reveals almost as much T as MT. Moreover, in contrast to earlier views, MT in tissue extracts appears to be less stable than T. The existence of T in tissues under normal physiological conditions has important implications for its function both in zinc metabolism and the redox balance of the cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial pathogens manipulate host cells to promote pathogen survival and dissemination. We used a 22,571 human cDNA microarray to identify host pathways that are affected by the Salmonella enterica subspecies typhimurium phoP gene, a transcription factor required for virulence, by comparing the expression profiles of human monocytic tissue culture cells infected with either the wild-type bacteria or a phoP∷Tn10 mutant strain. Both wild-type and phoP∷Tn10 bacteria induced a common set of genes, many of which are proinflammatory. Differentially expressed genes included those that affect host cell death, suggesting that the phoP regulatory system controls bacterial genes that alter macrophage survival. Subsequent experiments showed that the phoP∷Tn10 mutant strain is defective for killing both cultured and primary human macrophages but is able to replicate intracellularly. These experiments indicate that phoP plays a role in Salmonella-induced human macrophage cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of the cornea to transmit light while being mechanically resilient is directly attributable to the formation of an extracellular matrix containing orthogonal sheets of collagen fibrils. The detailed structure of the fibrils and how this structure underpins the mechanical properties and organization of the cornea is understood poorly. In this study, we used automated electron tomography to study the three-dimensional organization of molecules in corneal collagen fibrils. The reconstructions show that the collagen molecules in the 36-nm diameter collagen fibrils are organized into microfibrils (≈4-nm diameter) that are tilted by ≈15° to the fibril long axis in a right-handed helix. An unexpected finding was that the microfibrils exhibit a constant-tilt angle independent of radial position within the fibril. This feature suggests that microfibrils in concentric layers are not always parallel to each other and cannot retain the same neighbors between layers. Analysis of the lateral structure shows that the microfibrils exhibit regions of order and disorder within the 67-nm axial repeat of collagen fibrils. Furthermore, the microfibrils are ordered at three specific regions of the axial repeat of collagen fibrils that correspond to the N- and C-telopeptides and the d-band of the gap zone. The reconstructions also show macromolecules binding to the fibril surface at sites that correspond precisely to where the microfibrils are most orderly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nociceptin (orphanin FQ), the newly discovered natural agonist of opioid receptor-like (ORL1) receptor, is a neuropeptide that is endowed with pronociceptive activity in vivo. Nociceptin is derived from a larger precursor, prepronociceptin (PPNOC), whose human, mouse, and rat genes we have now isolated. The PPNOC gene is highly conserved in the three species and displays organizational features that are strikingly similar to those of the genes of preproenkephalin, preprodynorphin, and preproopiomelanocortin, the precursors to endogenous opioid peptides, suggesting the four genes belong to the same family-i.e., have a common evolutionary origin. The PPNOC gene encodes a single copy of nociceptin as well as of other peptides whose sequence is strictly conserved across murine and human species; hence it is likely to be neurophysiologically significant. Northern blot analysis shows that the PPNOC gene is predominantly transcribed in the central nervous system (brain and spinal cord) and, albeit weakly, in the ovary, the sole peripheral organ expressing the gene. By using a radiation hybrid cell line panel, the PPNOC gene was mapped to the short arm of human chromosome 8 (8p21), between sequence-tagged site markers WI-5833 and WI-1172, in close proximity of the locus encoding the neurofilament light chain NEFL. Analysis of yeast artificial chromosome clones belonging to the WC8.4 contig covering the 8p21 region did not allow to detect the presence of the gene on these yeast artificial chromosomes, suggesting a gap in the coverage within this contig.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heptadecapeptide orphanin FQ (OFQ) is a recently discovered neuropeptide that exhibits structural features reminiscent of the opioid peptides and that is an endogenous ligand to a G protein-coupled receptor sequentially related to the opioid receptors. We have cloned both the human and rat cDNAs encoding the OFQ precursor proteins, to investigate whether the sequence relationships existing between the opioid and OFQ systems are also found at the polypeptide precursor level, in particular whether the OFQ precursor would encode several bioactive peptides as do the opioid precursors, and to study the regional distribution of OFQ sites of synthesis. The entire precursor protein displays structural homology to the opioid peptide precursors, especially preprodynorphin and preproenkephalin. The predicted amino acid sequence of the OFQ precursor contains a putative signal peptide and one copy of the OFQ sequence flanked by pairs of basic amino acid residues. Carboxyl-terminal to the OFQ sequence, the human and rat precursors contain a stretch of 28 amino acids that is 100% conserved and thus may encode novel bioactive peptides. Two peptides derived from this stretch were synthesized but were found to be unable to activate the OFQ receptor, suggesting that if they are produced in vivo, these peptides would likely recognize receptors different from the OFQ receptor. To begin analyzing the sites of OFQ mRNA synthesis, Northern analysis of human and rat tissues were carried out and showed that the OFQ precursor mRNA is mainly expressed in the brain. In situ hybridization of rat brain slices demonstrated a regional distribution pattern of the OFQ precursor mRNA, which is distinct from that of the opioid peptide precursors. These data confirm that the OFQ system differs from the opioid system at the molecular level, although the OFQ and opioid precursors may have arisen from a common ancestral gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five retrotransposon families of rice (Tos1-Tos5) have been reported previously. Here we report 15 new retrotransposon families of rice (Tos6-Tos20). In contrast to yeast and Drosophila retrotransposons, all of the rice retrotransposons examined appear inactive (or almost inactive) under normal growth conditions. Three of the rice retrotransposons (Tos10, Tos17, and Tos19) are activated under tissue culture conditions. The most active one, Tos17, was studied in detail. The copy number of Tos17 increased with prolonged culture period. In all of the plants regenerated from tissue cultures, including transgenic plants, 5 to 30 transposed Tos17 copies were detected. The transcript of Tos17 was only detected under tissue culture conditions, indicating that the transposition of Tos17 is mainly regulated at the transcriptional level. To examine the target-site specificity of Tos17 transposition, sequences flanking transposed Tos17 copies were analyzed. At least four out of eight target sites examined are coding regions. Other target sites may also be in genes because two out of four were transcribed. The regenerated plants with Tos17-insertions in the phytochrome A gene and the S-receptor kinase-related gene were identified. These results indicate that activation of Tos17 is an important cause of tissue culture-induced mutations. Tissue culture-induced activation of Tos17 may be a useful tool for insertional mutagenesis and functional analysis of genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue factor (TF) is the cellular receptor for coagulation factor VI/VIIa and is the membrane-bound glycoprotein that is generally viewed as the primary physiological initiator of blood coagulation. To define in greater detail the physiological role of TF in development and hemostasis, the TF gene was disrupted in mice. Mice heterozygous for the inactivated TF allele expressed approximately half the TF activity of wild-type mice but were phenotypically normal. However, homozygous TF-/- pups were never born in crosses between heterozygous mice. Analysis of mid-gestation embryos showed that TF-/- embryos die in utero between days 8.5 and 10.5. TF-/- embryos were morphologically distinct from their TF+/+ and TF+/- littermates after day 9.5 in that they were pale, edematous, and growth retarded. Histological studies showed that early organogenesis was normal. The initial failure in TF-/- embryos appeared to be hemorrhaging, leading to the leakage of embryonic red cells from both extraembryonic and embryonic vessels. These studies indicate that TF plays an indispensable role in establishing and/or maintaining vascular integrity in the developing embryo at a time when embryonic and extraembryonic vasculatures are fusing and blood circulation begins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The availability of gene-targeted mice deficient in the urokinase-type plasminogen activator (uPA), urokinase receptor (uPAR), tissue-type plasminogen activator (tPA), and plasminogen permits a critical, genetic-based analysis of the physiological and pathological roles of the two mammalian plasminogen activators. We report a comparative study of animals with individual and combined deficits in uPAR and tPA and show that these proteins are complementary fibrinolytic factors in mice. Sinusoidal fibrin deposits are found within the livers of nearly all adult mice examined with a dual deficiency in uPAR and tPA, whereas fibrin deposits are never found in livers collected from animals lacking uPAR and rarely detected in animals lacking tPA alone. This is the first demonstration that uPAR has a physiological role in fibrinolysis. However, uPAR-/-/tPA-/- mice do not develop the pervasive, multi-organ fibrin deposits, severe tissue damage, reduced fertility, and high morbidity and mortality observed in mice with a combined deficiency in tPA and the uPAR ligand, uPA. Furthermore, uPAR-/-/tPA-/- mice do not exhibit the profound impairment in wound repair seen in uPA-/-/tPA-/- mice when they are challenged with a full-thickness skin incision. These results indicate that plasminogen activation focused at the cell surface by uPAR is important in fibrin surveillance in the liver, but that uPA supplies sufficient fibrinolytic potential to clear fibrin deposits from most tissues and support wound healing without the benefit of either uPAR or tPA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a procedure for tissue preparation that combines thoroughly controlled physical and chemical treatments: quick-freezing and freeze-drying followed by fixation with OsO4 vapors and embedding by direct resin infiltration. Specimens of frog cutaneous pectoris muscle thus prepared were analyzed for total calcium using electron spectroscopic imaging/electron energy loss spectroscopy (ESI/EELS) approach. The preservation of the ultrastructure was excellent, with positive K/Na ratios revealed in the fibers by x-ray microanalysis. Clear, high-resolution EELS/ESI calcium signals were recorded from the lumen of terminal cisternae of the sarcoplasmic reticulum but not from longitudinal cisternae, as expected from previous studies carried out with different techniques. In many mitochondria, calcium was below detection whereas in others it was appreciable although at variable level. Within the motor nerve terminals, synaptic vesicles as well as some cisternae of the smooth endoplasmic reticulum yielded positive signals at variance with mitochondria, that were most often below detection. Taken as a whole, the present study reveals the potential of our experimental approach to map with high spatial resolution the total calcium within individual intracellular organelles identified by their established ultrastructure, but only where the element is present at high levels.