915 resultados para Tin oxide, Nanoparticles, Dye-Sensitized Solar Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin oxide is an n-type semiconductor material with a high covalent behavior. Mass transport in this oxide depends on the surface state promoted by atmosphere or by the solid solution of a non-isovalent oxide doping The sintering and grain growth of this type of oxide powder is then controlled by atmosphere and by extrinsic oxygen vacancy formation. For pure SnO2 powder the surface state depends only on the interaction of atmosphere molecules with the SnO2 surface. Inert atmosphere like argon or helium promotes oxygen vacancy formation at the surface due to reduction of SnO2 to SnO at the surface and liberation of oxygen molecules forming oxygen vacancies. As consequence surface diffusion is enhanced leading to grain coarsening but no densification. Oxygen atmosphere inhibits the SnO2 reduction decreasing the surface oxygen vacancy concentration. Addition of dopants with lower valence at sintering temperature creates extrinsic charged oxygen vacancies that promote mass transport at grain boundary leading to densification and grain growth of this polycrystalline oxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin oxide is an n type semiconductor material with a high covalent behavior. Mass transport in this oxide depends on the surface state promoted by atmosphere or by the solid solution of aliovalent oxide doping. The sintering and grain growth of this type of oxide powder is then controlled by atmosphere and by extrinsic oxygen vacancy formation. For pure SnO2 powder the surface state depends only on the interaction of atmosphere molecules with the SnO2 surface. Inert atmosphere like argon or helium promotes oxygen vacancy formation at the surface due to reduction of SnO2 to SnO at the surface and liberation of oxygen molecules forming oxygen vacancies. As a consequence surface diffusion is enhanced leading to grain coarsening but no densification. Oxygen atmosphere inhibits SnO2 reduction by decreasing the surface oxygen vacancy concentration. Addition of dopants with lower valence at the sintering temperature creates extrinsic charged oxygen vacancies that promote mass transport at the grain boundary leading to densification and grain growth of this polycrystalline oxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SnO2 ceramics doped with different amounts of Co, Cr or Nb were investigated using visible and infrared spectroscopy at room temperature. Based on the observed d-d transitions the valence states of incorporated dopants were determined. Values of the optical band-gap were calculated in all samples. The infrared spectra of the samples displayed variations in the position, relative intensity and width of the bands, which were attributed to the presence of dopants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium dioxide (rutile) has a lot of interesting and useful features and hence is widely utilized for application. It has been used as white pigment, photocatalyst, biocompatible material and semiconductor material used in solar battery. In semiconducting TiO2 oxygen vacancies are said to play an important role in the electrical conduction. Measurements of the elastic energy loss and modulus (anelastic spectroscopy) as a function of temperature can distinguish among the different atomic jumps, which occur in the various phases or at different local ordering. In this paper, it is reported anelastic relaxation measurements in TiO2 samples using a torsion pendulum operating in frequencies around 40Hz, in the temperature range between -173°C to 330°C with heating rate of 1°C/min. The results shown a reduction in the elasticity modulus with the increase in the corn starch content used for this consolidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin oxide has wakened up great scientific and technological interest for its potential use in varistors production and as gas sensor. In order to improve the microstructural and electrical properties in SnO varistor ceramics, the influence of differents dopants used, like TiO2 and Al2O3, is under research. The effect of TiO2 and Al2O3 on the properties of Sn-Co-Nb varistor Systems obtained by the Pechini method has been investigated in this work. Characterization of synthesized raw material was performed by X-Ray Diffraction (XRD) and Scanning Electronic Microscopy (SEM). The microstructural and electrical characterization of sintered samples show that the TiO2 favors the grain growth and the Al2O3, contributes to the decrease it, effect that is manifested in the Sn-Co-Nb varistor systems. Breakdown field increase up to 6300V/cm with increasing Al2O3 content and non-linear coefficients with α=22 were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Evidences have showed that the incidence of arterial hypertension is greater in postmenopausal women as compared to premenopausal. Physical inactivity has been implicated as a major contributor to weight gain and abdominal obesity in postmenopausal women and the incidence of cardiovascular disease increases dramatically after menopause. Additionally, more women than men die each year of coronary heart disease and are twice as likely as men to die within the first year after a heart attack. A healthy lifestyle has been strongly associated with the regular physical activity and evidences have shown that physically active subjects have more longevity with reduction of morbidity and mortality. Nitric oxide (NO) produced by endothelial cells has been implicated in this beneficial effect with improvement of vascular relaxing and reduction in blood pressure in both laboratory animals and human. Although the effect of exercise training in the human cardiovascular system has been largely studied, the majority of these studies were predominantly conducted in men or young volunteers. Therefore, the aim of this work was to investigate the effects of 6 months of dynamic exercise training (ET) on blood pressure and plasma nitrate/nitrite concentration (NOx-) in hypertensive postmenopausal women. Methods: Eleven volunteers were submitted to the ET consisting in 3 days a week, each session of 60 minutes during 6 months at moderate intensity (50% of heart rate reserve). Anthropometric parameters, blood pressure, NOx- concentration were measured at initial time and after ET. Results: A significant reduction in both systolic and diastolic blood pressure values was seen after ET which was accompanied by markedly increase of NOx- levels (basal: 10 ± 0.9; ET: 16 ± 2 μM). Total cholesterol was significantly reduced (basal: 220 ± 38 and ET: 178 ± 22 mg/dl), whereas triglycerides levels were not modified after ET (basal: 141 ± 89 and ET: 147 ± 8 mg/dl). Conclusion: Our study shows that changing in lifestyle promotes reducftion of arterial pressure which was accompanied by increase in nitrite/nitrate concentration. Therefore, 6-months of exercise training are an important approach in management arterial hypertension and play a protective effect in postmenopausal women. © 2009 Zaros et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this study was to develop dense and conducting SnO 2 ceramics without precipitated phases on the grain boundaries, which was verified using field emission scanning microscopy (FE-SEM) coupled with an energy-dispersive X-ray spectroscopy (FE-SEM/EDS). Two sample groups were investigated, where the first sample group was doped with zinc while the second one was doped with cobalt. The ceramics were prepared using the oxides mixture method and the sintering was carried out in a conventional muffle oven as well as in microwave oven. The results obtained were found to be similar regarding the relative density for the two sintering methods while time and temperature gains were observed for the microwave sintering method. The relative densities obtained were nearly 95%, for the two sintering methods. Concerning the electrical characterization measurements-electric field x current density as well as the environment temperature, the ceramics obtained through the conventional sintering method presented non-ohmic behavior. For the microwave sintered ceramics, we observed an ohmic behavior with electrical resistivity of 1.3 Ωcm for the samples doped with ZnO/Nb 2O 5 and 2.5 Ωcm for that of the samples doped with CoO/Nb 2O 5. The FE-SEM/EDS results for the microwave sintered ceramics indicated a structure with a reduced number of pores and other phases segregated at the grain boundaries, which leads to a better conductive ceramic than the conventional oven sintered samples. The dilatometry analysis determined the muffle sintering temperature and the difference between the densification of cobalt and zinc oxides. The addition of niobium oxide resulted in the decrease in resistivity, which thus led us to conclude that it is possible to obtain dense ceramics with low electrical resistivity based on SnO 2 using commercial oxides by the oxides mixture technique and the microwave oven sintering method. Copyright © 2011 American Scientific Publishers All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a briefly review, some trends and perspectives in the field of Photovoltaic energy conversion, which is considered to be the most important renewable energy source in few years, in the coming decades. The power electronics plays a fundamental role in this process, developing systems each times more competitive, efficient, reliable, and also reducing costs and reducing the payback time. Some trends are visible, which are the use of Silicon Carbide devices in PV inverters, the use of integrated inverter structures, the integration of power converters into the PV module or the use of few PV series connection, the development of thinner and more efficient solar cells. Moreover, the discussion about the necessity of MPPT and anti-island schemes are presented, mainly considering the expected growth of grid-tied applications. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethanol with added water may be found during the process of assessing its physical and chemical properties. This addition can damage automotive vehicle engines and also may contribute to tax evasion. The present contribution describes a method based on a photothermal transparent transducer to determine the water content in ethanol. A chamber with a window of lithium tantalate coated with a thin layer of indium tin oxide was used, and a 1450-nm laser diode was employed as the excitation source. The results indicated a nearly linear response of the apparatus, as a function of the water content in water/ethanol solutions ranging from 0 to 100 (vol.%). The results for the dependency of the photothermal signal on the laser power and chopping frequency suggested that reliable results can be obtained using laser power and chopping rates above 100 mW and 10 Hz, respectively. The results reported here may be useful in the development of an alternative method that can provide real-time data on the water concentration in ethanol in a rapid, portable and unambiguous way, and that can be easily used in laboratory analyses or in gas stations. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The widespread use of poly(3-hexylthiophene) (P3HT) in the active layers of organic solar cells indicates that it possesses chemical stability and solubility suitable for such an application. However, it would be desirable to have a material that can maintain these properties but with a smaller bandgap, which would lead to more efficient energy harvesting of the solar spectrum. Fifteen P3HT derivatives were studied using the Density Functional Theory. The conclusion is that it is possible to obtain compounds with significantly smaller bandgaps and with solubility and stability similar to that of P3HT, mostly through the binding of oxygen atoms or conjugated organic groups to the thiophenic ring. © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work studied the degradation of dipyrone, via electrochemical processes and via electro-Fenton reaction using a 4% CeO2/C gas diffusion electrode (GDE) prepared via modified polymeric precursor method. This material was used to electrochemically generate H2O2 through oxygen reduction. The mean crystallite sizes estimated by the Scherrer equation for 4% CeO2/C were 4 nm for CeO2-x (0 4 4) and 5 nm for CeO2 (1 1 1) while using transmission electron microscopy (TEM) the mean nanoparticle size was 5.4 nm. X-ray photoelectron spectroscopy (XPS) measurements revealed nearly equal concentrations of Ce(III) and Ce(IV) species on carbon, which contained high oxygenated acid species like CO and OCO. Electrochemical degradation using Vulcan XC 72R carbon showed that the dipyrone was not removed during the two hour electrolysis in all applied potentials by electro-degradation. Besides, when the Fenton process was employed the degradation was much similar when using cerium catalysts but the mineralization reaches just to 50% at -1.1 V. However, using the CeO2/C GDE, in 20 min all of the dipyrone was degraded with 26% mineralization at -1.3 V and when the Fenton process was employed, all of the dipyrone was removed after 5 min with 57% mineralization at -1.1 V. Relative to Vulcan XC72R, ceria acts as an oxygen buffer leading to an increase in the local oxygen concentration, facilitating H2O2 formation and consequently improving the dipyrone degradation © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we report on a new route of PEGylation of superparamagnetic iron oxide nanoparticles (SPIONs) by polycondensation reaction with carboxylate groups. Structural and magnetic characterizations were performed by X-ray diffractometry (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The XRD confirmed the spinel structure with a crystallite average diameter in the range of 3.5-4.1 nm in good agreement with the average diameter obtained by TEM (4.60-4.97 nm). The TGA data indicate the presence of PEG attached onto the SPIONs' surface. The SPIONs were superparamagnetic at room temperature with saturation magnetization (M S) from 36.7 to 54.1 emu/g. The colloidal stability of citrate- and PEG-coated SPIONs was evaluated by means of dynamic light scattering measurements as a function of pH, ionic strength, and nature of dispersion media (phosphate buffer and cell culture media). Our findings demonstrated that the PEG polymer chain length plays a key role in the coagulation behavior of the Mag-PEG suspensions. The excellent colloidal stability under the extreme conditions we evaluated, such as high ionic strength, pH near the isoelectric point, and cell culture media, revealed that suspensions comprising PEG-coated SPION, with PEG of molecular weight 600 and above, present steric stabilization attributed to the polymer chains attached onto the surface of SPIONs. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The poly(dimethylamino methacrylate) (PDMAEMA) brush-modified indium tin oxide (ITO) electrode was used to test the switch properties of interfacial activity caused by bioelectrochemical signals. The swelling of the polymer brushes increased when the medium's pH changed from alkaline to acid after glucose was added to the system. A pH change generated in situ by means of biocatalytic reactions enabled bioelectrocatalytic interface's reversible activation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)