940 resultados para Time of Arrival Method
Resumo:
In this paper we present a new, accurate form of the heat balance integral method, termed the Combined Integral Method (or CIM). The application of this method to Stefan problems is discussed. For simple test cases the results are compared with exact and asymptotic limits. In particular, it is shown that the CIM is more accurate than the second order, large Stefan number, perturbation solution for a wide range of Stefan numbers. In the initial examples it is shown that the CIM reduces the standard problem, consisting of a PDE defined over a domain specified by an ODE, to the solution of one or two algebraic equations. The latter examples, where the boundary temperature varies with time, reduce to a set of three first order ODEs.
Resumo:
We live in a "Demon-Haunted World". Human health care requires the ever increasing resistance of pathogens to be confronted by a correspondingly fast rate of discovery of novel antibiotics. One of the possible strategies towards this objective involves the rational localization of bioactive phytochemicals. The conceptual basis of the method consists in the surprisingly little known gearings of natural products with morphology, ecology and evolution of their plant source, i. e. an introspection into the general mechanisms of nature.
Resumo:
The double spin-echo point resolved spectroscopy sequence (PRESS) is a widely used method and standard in clinical MR spectroscopy. Existence of important J-modulations at constant echo times, depending on the temporal delays between the rf-pulses, have been demonstrated recently for strongly coupled spin systems and were exploited for difference editing, removing singlets from the spectrum (strong-coupling PRESS, S-PRESS). A drawback of this method for in vivo applications is that large signal modulations needed for difference editing occur only at relatively long echo times. In this work we demonstrate that, by simply adding a third refocusing pulse (3S-PRESS), difference editing becomes possible at substantially shorter echo times while, as applied to citrate, more favorable lineshapes can be obtained. For the example of an AB system an analytical description of the MR signal, obtained with this triple refocusing sequence (3S-PRESS), is provided.
Resumo:
Abstract OBJECTIVE To determine time standards for interventions and activities conducted by nursing professionals in Family Health Units (FHU) in Brazil to substantiate the calculation of work force. METHOD This was an observational study carried out in 27 FHU, in 12 municipalities in 10 states, in 2013. In each unit, nursing professionals were observed every 10 minutes, for eight work hours, on five consecutive days via the work sampling technique. RESULTS A total of 32,613 observations were made, involving 47 nurses and 93 nursing technicians/assistants. Appointments were the main intervention carried out by nurses, with a mean time of 25.3 minutes, followed by record-keeping, which corresponded to 9.7%. On average, nursing technicians/assistants spent 6.3% of their time keeping records and 30.6 intervention minutes on immunization/vaccination control. CONCLUSION The study resulted in standard times of interventions carried out by the FHU nursing team, which can underpin the determination of nursing staff size and human resource policies. Furthermore, the study showed the panorama of interventions currently employed, allowing for the work process to be reviewed and optimized.
Resumo:
The standard one-machine scheduling problem consists in schedulinga set of jobs in one machine which can handle only one job at atime, minimizing the maximum lateness. Each job is available forprocessing at its release date, requires a known processing timeand after finishing the processing, it is delivery after a certaintime. There also can exists precedence constraints between pairsof jobs, requiring that the first jobs must be completed beforethe second job can start. An extension of this problem consistsin assigning a time interval between the processing of the jobsassociated with the precedence constrains, known by finish-starttime-lags. In presence of this constraints, the problem is NP-hardeven if preemption is allowed. In this work, we consider a specialcase of the one-machine preemption scheduling problem with time-lags, where the time-lags have a chain form, and propose apolynomial algorithm to solve it. The algorithm consist in apolynomial number of calls of the preemption version of the LongestTail Heuristic. One of the applicability of the method is to obtainlower bounds for NP-hard one-machine and job-shop schedulingproblems. We present some computational results of thisapplication, followed by some conclusions.
Resumo:
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid-solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently bench-marked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.
Resumo:
Contamination of weather radar echoes by anomalous propagation (anaprop) mechanisms remains a serious issue in quality control of radar precipitation estimates. Although significant progress has been made identifying clutter due to anaprop there is no unique method that solves the question of data reliability without removing genuine data. The work described here relates to the development of a software application that uses a numerical weather prediction (NWP) model to obtain the temperature, humidity and pressure fields to calculate the three dimensional structure of the atmospheric refractive index structure, from which a physically based prediction of the incidence of clutter can be made. This technique can be used in conjunction with existing methods for clutter removal by modifying parameters of detectors or filters according to the physical evidence for anomalous propagation conditions. The parabolic equation method (PEM) is a well established technique for solving the equations for beam propagation in a non-uniformly stratified atmosphere, but although intrinsically very efficient, is not sufficiently fast to be practicable for near real-time modelling of clutter over the entire area observed by a typical weather radar. We demonstrate a fast hybrid PEM technique that is capable of providing acceptable results in conjunction with a high-resolution terrain elevation model, using a standard desktop personal computer. We discuss the performance of the method and approaches for the improvement of the model profiles in the lowest levels of the troposphere.
Resumo:
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in cylindrical coordinates. An important application of this method is the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh consisting of three concentric domains representing the borehole fluid in the center, the borehole casing and the surrounding porous formation. The spatial discretization is based on a Chebyshev expansion in the radial direction, Fourier expansions in the other directions, and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method based on the method of characteristics is used to match the boundary conditions at the fluid/porous-solid and porous-solid/porous-solid interfaces. The viability and accuracy of the proposed method has been tested and verified in 2D polar coordinates through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. The proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is handled adequately.
Resumo:
An instrument designed to measure thermal conductivity of consolidated rocks, dry or saturated, using a transient method is presented. The instrument measures relative values of the thermal conductivity, and it needs calibration to obtain absolute values. The device can be used as heat pulse line source and as continuous heat line source. Two parameters to determine thermal conductivity are proposed: TMAX, in heat pulse line source, and SLOPE, in continuous heat line source. Its performance is better, and the operation simpler, in heat pulse line-source mode with a measuring time of 170 s and a reproducibility better than 2.5%. The sample preparation is very simple on both modes. The performance has been tested with a set of ten rocks with thermal conductivity values between 1.4 and 5.2 W m¿1 K¿1 which covers the usual range for consolidated rocks.
Resumo:
Estimating the time since discharge of a spent cartridge or a firearm can be useful in criminal situa-tions involving firearms. The analysis of volatile gunshot residue remaining after shooting using solid-phase microextraction (SPME) followed by gas chromatography (GC) was proposed to meet this objective. However, current interpretative models suffer from several conceptual drawbacks which render them inadequate to assess the evidential value of a given measurement. This paper aims to fill this gap by proposing a logical approach based on the assessment of likelihood ratios. A probabilistic model was thus developed and applied to a hypothetical scenario where alternative hy-potheses about the discharge time of a spent cartridge found on a crime scene were forwarded. In order to estimate the parameters required to implement this solution, a non-linear regression model was proposed and applied to real published data. The proposed approach proved to be a valuable method for interpreting aging-related data.
Resumo:
Egesta of a cave-dwelling mysid (Hemimysis speluncola Ledoyer, 1963) was studied in a submarine cave of Medes Islands, NW Mediterranean by in situ fecal pellet collecting. Fecal pellet production and gut fullness of mysids during incubation experiments are used to estimate mysid egestion rates. Intrinsic factors related with the natural history of this species such as population structure, density of mysids, daily rhythms and pellet decomposition rates are tested for their influence on the egestion rate. The effects of methodological artifacts, such as the stress induced by both incubation and preservation procedures, are also studied. An average mysid egests about 2.5 pellets per day into the cave. The time of day is the main factor affecting egestion. The highest deposition rate is between 2 to 4 hours after sunrise when about 38 % of the total daily pellet production becomes egested. Fecal pellet morphology changes with mysid demographic classes: immature mysids produce slender and thick pellets, whereas mature mysids produce only thick pellets. Immature classes show higher percentages of full guts than mature ones. Mysid density in the incubators does not affect the results on gut fullness, but it causes a decrease in the number of pellets collected after incubation. Coprorhexia seems to be the only plausible process to explain this paradox. The incubation procedure does not increase deposition rate significantly. Time of incubation is critical because the half-life of fecal pellets is about 2.5 hours. Fixation with liquid nitrogen decreases gut fullness and also deposition rates. Higher values are obtained with 70 % ethanol and 5 % formalin solutions which show very similar results for both gut fullness and pellet deposition rates. Nevertheless, ethanol is not suitable as fixative because it enhances the opacity of the body. Several suggestions are given in order to optimize the reliability of further in situ experiments for evaluation of egesta of Hemimysis speluncola in submarine caves.
Resumo:
The objective of this work was to genotype the single nucleotide polymorphism (SNP) A2959G (AF159246) of bovine CAST gene by PCR-RFLP technique, and to report its use for the first time. For this, 147 Bos indicus and Bos taurus x Bos indicus animals were genotyped. The accuracy of the method was confirmed through the direct sequencing of PCR products of nine individuals. The lowest frequency of the meat tenderness favorable allele (A) in Bos indicus was confirmed. The use of PCR-RFLP for the genotyping of the bovine CAST gene SNP was shown to be robust and inexpensive, which will greatly facilitate its analysis by laboratories with basic structure.
Resumo:
Needle trap devices (NTDs) are a relatively new and promising tool for headspace (HS) analysis. In this study, a dynamic HS sampling procedure is evaluated for the determination of volatile organic compounds (VOCs) in whole blood samples. A full factorial design was used to evaluate the influence of the number of cycles and incubation time and it is demonstrated that the controlling factor in the process is the number of cycles. A mathematical model can be used to determine the most appropriate number of cycles required to adsorb a prefixed amount of VOCs present in the HS phase whenever quantitative adsorption is reached in each cycle. Matrix effect is of great importance when complex biological samples, such as blood, are analyzed. The evaluation of the salting out effect showed a significant improvement in the volatilization of VOCs to the HS in this type of matrices. Moreover, a 1:4 (blood:water) dilution is required to obtain quantitative recoveries of the target analytes when external calibration is used. The method developed gives detection limits in the 0.020–0.080 μg L−1 range (0.1–0.4 μg L−1 range for undiluted blood samples) with appropriate repeatability values (RSD < 15% at high level and <23% at LOQ level). Figure of merits of the method can be improved by using a smaller phase ratio (i.e., an increase in the blood volume and a decrease in the HS volume), which lead to lower detection limits, better repeatability values and greater sensibility. Twenty-eight blood samples have been evaluated with the proposed method and the results agree with those indicated in other studies. Benzene was the only target compound that gave significant differences between blood levels detected in volunteer non-smokers and smokers
Resumo:
This thesis concentrates on studying the operational disturbance behavior of machine tools integrated into FMS. Operational disturbances are short term failures of machine tools which are especially disruptive to unattended or unmanned operation of FMS. The main objective was to examine the effect of operational disturbances on reliability and operation time distribution for machine tools. The theoretical part of the thesis covers the fimdamentals of FMS relating to the subject of this study. The concept of FMS, its benefits and operator's role in FMS operation are reviewed. The importance of reliability is presented. The terms describing the operation time of machine tools are formed by adopting standards and references. The concept of failure and indicators describing reliability and operational performance for machine tools in FMSs are presented. The empirical part of the thesis describes the research methodology which is a combination of automated (ADC) and manual data collection. By using this methodology it is possible to have a complete view of the operation time distribution for studied machine tools. Data collection was carried out in four FMSs consisting of a total of 17 machine tools. Each FMS's basic features and the signals of ADC are described. The indicators describing the reliability and operation time distribution of machine tools were calculated according to collected data. The results showed that operational disturbances have a significant influence on machine tool reliability and operational performance. On average, an operational disturbance occurs every 8,6 hours of operation time and has a down time of 0,53 hours. Operational disturbances cause a 9,4% loss in operation time which is twice the amount of losses caused by technical failures (4,3%). Operational disturbances have a decreasing influence on the utilization rate. A poor operational disturbance behavior decreases the utilization rate. It was found that the features of a part family to be machined and the method technology related to it are defining the operational disturbance behavior of the machine tool. Main causes for operational disturbances were related to material quality variations, tool maintenance, NC program errors, ATC and machine tool control. Operator's role was emphasized. It was found that failure recording activity of the operators correlates with the utilization rate. The more precisely the operators record the failure, the higher is the utilization rate. Also the FMS organizations which record failures more precisely have fewer operational disturbances.
Resumo:
The present work describes a novel stability-indicating reversed-phase ultra performance liquid chromatography method for the separation and quantification of rosuvastatin (RSV) and its related impurities in the pharmaceutical dosage forms under forced degradation conditions. An unknown degradation impurity detected in the acid degradation was identified by using quadrupole time-of-flight mass spectrometry. The chromatographic separation was carried out on C-18 column (100 x 2.1 mm, 1.7 μm) using isocratic elution with methanol and 0.1% trifluoroacetic acid (50:50). The total run time was 12 min within which RSV as well as all related impurities and degradation products were separated. The developed method was validated for RSV and related impurities in pharmaceutical dosage forms.