973 resultados para Tight coupling
Resumo:
International audience
Resumo:
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration.
Resumo:
68 pg.
Resumo:
This paper discusses how to design a Radial Line Slot Antenna (RLSA) whose waveguide is filled with high loss dielectric materials. We introduce a new design for the aperture slot coupling synthesis to restrain the dielectric losses and improve the antenna gain. Based on a newly defined slot coupling, a number of RLSAs with different sizes and loss factors are analyzed and their performances are predicted. Theoretical calculations suggest that the gain is sensitive to the material losses in the radial lines. The gain enhancement by using the new coupling formula is notable for larger antenna size and higher loss factor of the dielectric material. Three prototype RLSAs are designed and fabricated at 60GHz following different slot coupling syntheses, and their measured performances consolidate our theory.
Resumo:
With the increasing of energetic consumption in the worldwile, conventional reservoirs, known by their easy exploration and exploitation, are not being enough to satisfy this demand, what has made necessary exploring unconventional reservoirs. This kind of exploration demands developing more advanced technologies to make possible to exploit those hydrocarbons. Tight gas is an example of this kind of unconventional reservoir. It refers to sandstone fields with low porosity, around 8%, and permeabilities between 0.1 and 0.0001 mD, which accumulates considerable amounts of natural gas. That natural gas can only be extracted by applying hydraulic fracturing, aiming at stimulating the reservoir, by creating a preferential way through the reservoir to the well, changing and making easier the flow of fluids, thus increasing the productivity of those reservoirs. Therefore, the objective of this thesis is analyzing the recovery factor of a reservoir by applying hydraulic fracturing. All the studies were performed through simulations using the IMEX software, by CMG (Computer Modelling Group), in it 2012.10 version
Resumo:
In the presented thesis work, the meshfree method with distance fields was coupled with the lattice Boltzmann method to obtain solutions of fluid-structure interaction problems. The thesis work involved development and implementation of numerical algorithms, data structure, and software. Numerical and computational properties of the coupling algorithm combining the meshfree method with distance fields and the lattice Boltzmann method were investigated. Convergence and accuracy of the methodology was validated by analytical solutions. The research was focused on fluid-structure interaction solutions in complex, mesh-resistant domains as both the lattice Boltzmann method and the meshfree method with distance fields are particularly adept in these situations. Furthermore, the fluid solution provided by the lattice Boltzmann method is massively scalable, allowing extensive use of cutting edge parallel computing resources to accelerate this phase of the solution process. The meshfree method with distance fields allows for exact satisfaction of boundary conditions making it possible to exactly capture the effects of the fluid field on the solid structure.
Resumo:
The spatial distribution of the magnetic field and the coupling between the coils in the Wireless Power Transfer (WPT) systems is an important aspect to consider in the system design and efficiency optimization. The presented study in this paper is based on tests performed on a physical model. The transmitting (primary) equipment, is an electrical three-phase system, capable to be connected in star or delta (both electrically and geometrically). The measured results allow to describe graphically the magnetic field distribution in three dimensions. The analytical formulas aim to help to understand and to quantify the physical phenomena but they cannot be considered a universal approach and the measurement results help to understand better the observable facts. In the WPT, the key issues that will influence the efficiency, are the alignment of the coils, the spatial orientation of the magnetic field, the detachment and the tilt between the windings, all they changing the magnetic coupling between the transmitter and the receiver of energy. This research is directed not only to the magnetic field distribution but finally, to optimize the energy transfer efficiency.
Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling
Resumo:
We present an isogeometric thin shell formulation for multi-patches based on rational splines over hierarchical T-meshes (RHT-splines). Nitsche’s method is employed to efficiently couple the patches. The RHT-splines have the advantages of allowing a computationally feasible local refine- ment, are free from linear independence, possess high order continuity and satisfy the partition of unity and non-negativity, properties. In addition, C 1 continuity of the RHT-splines obviates to use of rotational degrees of freedom. The good performance of the present method is demonstrated by a number of numerical examples.
Resumo:
We develop an algorithm and computational implementation for simulation of problems that combine Cahn–Hilliard type diffusion with finite strain elasticity. We have in mind applications such as the electro-chemo- mechanics of lithium ion (Li-ion) batteries. We concentrate on basic computational aspects. A staggered algorithm is pro- posed for the coupled multi-field model. For the diffusion problem, the fourth order differential equation is replaced by a system of second order equations to deal with the issue of the regularity required for the approximation spaces. Low order finite elements are used for discretization in space of the involved fields (displacement, concentration, nonlocal concentration). Three (both 2D and 3D) extensively worked numerical examples show the capabilities of our approach for the representation of (i) phase separation, (ii) the effect of concentration in deformation and stress, (iii) the effect of Electronic supplementary material The online version of this article (doi:10.1007/s00466-015-1235-1) contains supplementary material, which is available to authorized users. B P. Areias pmaa@uevora.pt 1 Department of Physics, University of Évora, Colégio Luís António Verney, Rua Romão Ramalho, 59, 7002-554 Évora, Portugal 2 ICIST, Lisbon, Portugal 3 School of Engineering, Universidad de Cuenca, Av. 12 de Abril s/n. 01-01-168, Cuenca, Ecuador 4 Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstraße 15, 99423 Weimar, Germany strain in concentration, and (iv) lithiation. We analyze con- vergence with respect to spatial and time discretization and found that very good results are achievable using both a stag- gered scheme and approximated strain interpolation.
Resumo:
Two novelties are introduced: (i) a finite-strain semi-implicit integration algorithm compatible with current element technologies and (ii) the application to assumed-strain hexahedra. The Löwdin algo- rithm is adopted to obtain evolving frames applicable to finite strain anisotropy and a weighted least- squares algorithm is used to determine the mixed strain. Löwdin frames are very convenient to model anisotropic materials. Weighted least-squares circumvent the use of internal degrees-of-freedom. Het- erogeneity of element technologies introduce apparently incompatible constitutive requirements. Assumed-strain and enhanced strain elements can be either formulated in terms of the deformation gradient or the Green–Lagrange strain, many of the high-performance shell formulations are corotational and constitutive constraints (such as incompressibility, plane stress and zero normal stress in shells) also depend on specific element formulations. We propose a unified integration algorithm compatible with possibly all element technologies. To assess its validity, a least-squares based hexahedral element is implemented and tested in depth. Basic linear problems as well as 5 finite-strain examples are inspected for correctness and competitive accuracy.
Resumo:
Evaluating the nature of the earliest, often controversial, traces of life in the geological record (dating to the Palaeoarchaean, up to ~3.5 billion years before the present) is of fundamental relevance for placing constraints on the potential that life emerged on Mars at approximately the same time (the Noachian period). In their earliest histories, the two planets shared many palaeoenvironmental similarities, before the surface of Mars rapidly became inhospitable to life as we know it. Multi-scalar, multi-modal analyses of fossiliferous rocks from the Barberton greenstone belt of South Africa and the East Pilbara terrane of Western Australia are a window onto primitive prokaryotic ecoystems. Complementary petrographic, morphological, (bio)geochemical and nanostructural analyses of chert horizons and the carbonaceous material within using a wide range of techniques – including optical microscopy, SEM-EDS, Raman spectroscopy, PIXE, µCT, laser ablation ICP-MS, high-resolution TEM-based analytical techniques and secondary ion mass spectrometry – can characterise, at scales from macroscopic to nanoscopic, the fossilised biomes of the earliest Earth. These approaches enable the definition of the palaeoenvironments, and potentially metabolic networks, preserved in ancient rocks. Modifying these protocols is necessary for Martian exploration using rovers, since the range and power of space instrumentation is significantly reduced relative to terrestrial laboratories. Understanding the crucial observations possible using highly complementary rover-based payloads is therefore critical in scientific protocols aiming to detect traces of life on Mars.
Resumo:
This thesis work contains an overview of potential alternative options to couple formate produced from CO2 with other coupling partners than formate itself. Ultimately, the intent is to produce high value chemicals from CO2 at a high selectivity and conversion, whilst keeping the required utility of electrons in the electrochemical CO2 conversion at a minimum. To select and find new coupling partners, a framework was developed upon which a broad variety of candidates were assessed and ranked. A multi-stage process was used to select first potential classes of molecules. For each class, a variety of commercially available compounds was analysed in depth for its potential suitability in the reaction with the active carbonite intermediate. This analysis has shown that a wide variety of factors come into play and especially the reactivity of the hydride catalyst poses a mayor challenge. The three major potential classes of compounds suitable for the coupling are carbon oxides (CO2 & CO), and aldehydes. As a second step the remaining options were ranked to identify which compound to test first. In this ranking the reactants sustainability, ease of commercial operation and commercial attractiveness of the compound were considered. The highest-ranking compounds that proposed the highest potential are CO2, benzaldehyde and para-formaldehyde. In proof-of-principle experiments CO2 could successfully be incorporated in the form of carbonate, oxalate and potentially formate. The overall incorporation efficiency based on the hydride consumption was shown to be 50%. It is suggested to continue this work with mechanistic studies to understand the reaction in detail as, based on further gained knowledge, the reaction can then be optimized towards optimal CO2 incorporation in the form of oxalate.
Resumo:
As future technologies are going to be autonomous under the umbrella of the Internet of things (IoT) we can expect WPT to be the solution for intelligent devices. WPT has many industrial and medical applications both in the near-field and far-field domains. Considering the impact of WPT, this thesis is an attempt to design and realize both near-field and far-field WPT solutions for different application scenarios. A 27 MHz high frequency inductive wireless power link has been designed together with the Class-E switching inverter to compensate for the efficiency loss because of the varying weak coupling between transmitter and receiver because of their mutual misalignment. Then a system of three coils was introduced for SWIPT. The outer coil for WPT and the inner two coils were designed to fulfil the purpose of communication and testing, operating at frequencies different from the WPT coil. In addition to that, a trapping filter technique has also been adopted to ensure the EM isolation of the coils. Moreover, a split ring resonator-based dual polarization converter has been designed with good efficiency over a wide frequency range. The gap or cuts have been introduced in the adjacent sides of the square ring to make it a dual-polarization converter. The converter is also stable over a wide range of incident angles. Furthermore, a meta-element based intelligent surface has been designed to work in the reflection mode at 5 GHz. In this research activity, interdigital capacitors (IDCs) instead of ICs are introduced and a thin layer of the HfZrO between substrate and meta elements is placed whose response can be tuned and controlled with the applied voltage to achieve IRS.