916 resultados para Tensor Encoding
Resumo:
This thesis investigates aspects of encoding the speech spectrum at low bit rates, with extensions to the effect of such coding on automatic speaker identification. Vector quantization (VQ) is a technique for jointly quantizing a block of samples at once, in order to reduce the bit rate of a coding system. The major drawback in using VQ is the complexity of the encoder. Recent research has indicated the potential applicability of the VQ method to speech when product code vector quantization (PCVQ) techniques are utilized. The focus of this research is the efficient representation, calculation and utilization of the speech model as stored in the PCVQ codebook. In this thesis, several VQ approaches are evaluated, and the efficacy of two training algorithms is compared experimentally. It is then shown that these productcode vector quantization algorithms may be augmented with lossless compression algorithms, thus yielding an improved overall compression rate. An approach using a statistical model for the vector codebook indices for subsequent lossless compression is introduced. This coupling of lossy compression and lossless compression enables further compression gain. It is demonstrated that this approach is able to reduce the bit rate requirement from the current 24 bits per 20 millisecond frame to below 20, using a standard spectral distortion metric for comparison. Several fast-search VQ methods for use in speech spectrum coding have been evaluated. The usefulness of fast-search algorithms is highly dependent upon the source characteristics and, although previous research has been undertaken for coding of images using VQ codebooks trained with the source samples directly, the product-code structured codebooks for speech spectrum quantization place new constraints on the search methodology. The second major focus of the research is an investigation of the effect of lowrate spectral compression methods on the task of automatic speaker identification. The motivation for this aspect of the research arose from a need to simultaneously preserve the speech quality and intelligibility and to provide for machine-based automatic speaker recognition using the compressed speech. This is important because there are several emerging applications of speaker identification where compressed speech is involved. Examples include mobile communications where the speech has been highly compressed, or where a database of speech material has been assembled and stored in compressed form. Although these two application areas have the same objective - that of maximizing the identification rate - the starting points are quite different. On the one hand, the speech material used for training the identification algorithm may or may not be available in compressed form. On the other hand, the new test material on which identification is to be based may only be available in compressed form. Using the spectral parameters which have been stored in compressed form, two main classes of speaker identification algorithm are examined. Some studies have been conducted in the past on bandwidth-limited speaker identification, but the use of short-term spectral compression deserves separate investigation. Combining the major aspects of the research, some important design guidelines for the construction of an identification model when based on the use of compressed speech are put forward.
Resumo:
This thesis presents an original approach to parametric speech coding at rates below 1 kbitsjsec, primarily for speech storage applications. Essential processes considered in this research encompass efficient characterization of evolutionary configuration of vocal tract to follow phonemic features with high fidelity, representation of speech excitation using minimal parameters with minor degradation in naturalness of synthesized speech, and finally, quantization of resulting parameters at the nominated rates. For encoding speech spectral features, a new method relying on Temporal Decomposition (TD) is developed which efficiently compresses spectral information through interpolation between most steady points over time trajectories of spectral parameters using a new basis function. The compression ratio provided by the method is independent of the updating rate of the feature vectors, hence allows high resolution in tracking significant temporal variations of speech formants with no effect on the spectral data rate. Accordingly, regardless of the quantization technique employed, the method yields a high compression ratio without sacrificing speech intelligibility. Several new techniques for improving performance of the interpolation of spectral parameters through phonetically-based analysis are proposed and implemented in this research, comprising event approximated TD, near-optimal shaping event approximating functions, efficient speech parametrization for TD on the basis of an extensive investigation originally reported in this thesis, and a hierarchical error minimization algorithm for decomposition of feature parameters which significantly reduces the complexity of the interpolation process. Speech excitation in this work is characterized based on a novel Multi-Band Excitation paradigm which accurately determines the harmonic structure in the LPC (linear predictive coding) residual spectra, within individual bands, using the concept 11 of Instantaneous Frequency (IF) estimation in frequency domain. The model yields aneffective two-band approximation to excitation and computes pitch and voicing with high accuracy as well. New methods for interpolative coding of pitch and gain contours are also developed in this thesis. For pitch, relying on the correlation between phonetic evolution and pitch variations during voiced speech segments, TD is employed to interpolate the pitch contour between critical points introduced by event centroids. This compresses pitch contour in the ratio of about 1/10 with negligible error. To approximate gain contour, a set of uniformly-distributed Gaussian event-like functions is used which reduces the amount of gain information to about 1/6 with acceptable accuracy. The thesis also addresses a new quantization method applied to spectral features on the basis of statistical properties and spectral sensitivity of spectral parameters extracted from TD-based analysis. The experimental results show that good quality speech, comparable to that of conventional coders at rates over 2 kbits/sec, can be achieved at rates 650-990 bits/sec.
Resumo:
One approach to reducing the yield losses caused by banana viral diseases is the use of genetic engineering and pathogen-derived resistance strategies to generate resistant cultivars. The development of transgenic virus resistance requires an efficient banana transformation method, particularly for commercially important 'Cavendish' type cultivars such as 'Grand Nain'. Prior to this study, only two examples of the stable transformation of banana had been reported, both of which demonstrated the principle of transformation but did not characterise transgenic plants in terms of the efficiency at which individual transgenic lines were generated, relative activities of promoters in stably transformed plants, and the stability of transgene expression. The aim of this study was to develop more efficient transformation methods for banana, assess the activity of some commonly used and also novel promoters in stably transformed plants, and transform banana with genes that could potentially confer resistance to banana bunchy top nanovirus (BBTV) and banana bract mosaic potyvirus (BBrMV). A regeneration system using immature male flowers as the explant was established. The frequency of somatic embryogenesis in male flower explants was influenced by the season in which the inflorescences were harvested. Further, the media requirements of various banana cultivars in respect to the 2,4-D concentration in the initiation media also differed. Following the optimisation of these and other parameters, embryogenic cell suspensions of several banana (Musa spp.) cultivars including 'Grand Nain' (AAA), 'Williams' (AAA), 'SH-3362' (AA), 'Goldfinger' (AAAB) and 'Bluggoe' (ABB) were successfully generated. Highly efficient transformation methods were developed for both 'Bluggoe' and 'Grand Nain'; this is the first report of microprojectile bombardment transformation of the commercially important 'Grand Nain' cultivar. Following bombardment of embryogenic suspension cells, regeneration was monitored from single transfom1ed cells to whole plants using a reporter gene encoding the green fluorescent protein (gfp). Selection with kanamycin enabled the regeneration of a greater number of plants than with geneticin, while still preventing the regeneration of non-transformed plants. Southern hybridisation confirmed the neomycin phosphotransferase gene (npt II) was stably integrated into the banana genome and that multiple transgenic lines were derived from single bombardments. The activity, stability and tissue specificity of the cauliflower mosaic virus 358 (CaMV 35S) and maize polyubiquitin-1 (Ubi-1) promoters were examined. In stably transformed banana, the Ubi-1 promoter provided approximately six-fold higher p-glucuronidase (GUS) activity than the CaMV 35S promoter, and both promoters remained active in glasshouse grown plants for the six months they were observed. The intergenic regions ofBBTV DNA-I to -6 were isolated and fused to either the uidA (GUS) or gfjJ reporter genes to assess their promoter activities. BBTV promoter activity was detected in banana embryogenic cells using the gfp reporter gene. Promoters derived from BBTV DNA-4 and -5 generated the highest levels of transient activity, which were greater than that generated by the maize Ubi-1 promoter. In transgenic banana plants, the activity of the BBTV DNA-6 promoter (BT6.1) was restricted to the phloem of leaves and roots, stomata and root meristems. The activity of the BT6.1 promoter was enhanced by the inclusion of intron-containing fragments derived from the maize Ubi-1, rice Act-1, and sugarcane rbcS 5' untranslated regions in GUS reporter gene constructs. In transient assays in banana, the rice Act-1 and maize Ubi-1 introns provided the most significant enhancement, increasing expression levels 300-fold and 100-fold, respectively. The sugarcane rbcS intron increased expression about 10-fold. In stably transformed banana plants, the maize Ubi-1 intron enhanced BT6.1 promoter activity to levels similar to that of the CaMV 35S promoter, but did not appear to alter the tissue specificity of the promoter. Both 'Grand Nain' and 'Bluggoe' were transformed with constructs that could potentially confer resistance to BBTV and BBrMV, including constructs containing BBTV DNA-1 major and internal genes, BBTV DNA-5 gene, and the BBrMV coat protein-coding region all under the control of the Ubi-1 promoter, while the BT6 promoter was used to drive the npt II selectable marker gene. At least 30 transgenic lines containing each construct were identified and replicates of each line are currently being generated by micropropagation in preparation for virus challenge.
Resumo:
Prostate cancer is an important male health issue. The strategies used to diagnose and treat prostate cancer underscore the cell and molecular interactions that promote disease progression. Prostate cancer is histologically defined by increasingly undifferentiated tumour cells and therapeutically targeted by androgen ablation. Even as the normal glandular architecture of the adult prostate is lost, prostate cancer cells remain dependent on the androgen receptor (AR) for growth and survival. This project focused on androgen-regulated gene expression, altered cellular differentiation, and the nexus between these two concepts. The AR controls prostate development, homeostasis and cancer progression by regulating the expression of downstream genes. Kallikrein-related serine peptidases are prominent transcriptional targets of AR in the adult prostate. Kallikrein 3 (KLK3), which is commonly referred to as prostate-specific antigen, is the current serum biomarker for prostate cancer. Other kallikreins are potential adjunct biomarkers. As secreted proteases, kallikreins act through enzyme cascades that may modulate the prostate cancer microenvironment. Both as a panel of biomarkers and cascade of proteases, the roles of kallikreins are interconnected. Yet the expression and regulation of different kallikreins in prostate cancer has not been compared. In this study, a spectrum of prostate cell lines was used to evaluate the expression profile of all 15 members of the kallikrein family. A cluster of genes was co-ordinately expressed in androgenresponsive cell lines. This group of kallikreins included KLK2, 3, 4 and 15, which are located adjacent to one another at the centromeric end of the kallikrein locus. KLK14 was also of interest, because it was ubiquitously expressed among the prostate cell lines. Immunohistochemistry showed that these 5 kallikreins are co-expressed in benign and malignant prostate tissue. The androgen-regulated expression of KLK2 and KLK3 is well-characterised, but has not been compared with other kallikreins. Therefore, KLK2, 3, 4, 14 and 15 expression were all measured in time course and dose response experiments with androgens, AR-antagonist treatments, hormone deprivation experiments and cells transfected with AR siRNA. Collectively, these experiments demonstrated that prostatic kallikreins are specifically and directly regulated by the AR. The data also revealed that kallikrein genes are differentially regulated by androgens; KLK2 and KLK3 were strongly up-regulated, KLK4 and KLK15 were modestly up-regulated, and KLK14 was repressed. Notably, KLK14 is located at the telomeric end of the kallikrein locus, far away from the centromeric cluster of kallikreins that are stimulated by androgens. These results show that the expression of KLK2, 3, 4, 14 and 15 is maintained in prostate cancer, but that these genes exhibit different responses to androgens. This makes the kallikrein locus an ideal model to investigate AR signalling. The increasingly dedifferentiated phenotype of aggressive prostate cancer cells is accompanied by the re-expression of signalling molecules that are usually expressed during embryogenesis and foetal tissue development. The Wnt pathway is one developmental cascade that is reactivated in prostate cancer. The canonical Wnt cascade regulates the intracellular levels of β-catenin, a potent transcriptional co-activator of T-cell factor (TCF) transcription factors. Notably, β-catenin can also bind to the AR and synergistically stimulate androgen-mediated gene expression. This is at the expense of typical Wnt/TCF target genes, because the AR:β-catenin and TCF:β-catenin interactions are mutually exclusive. The effect of β-catenin on kallikrein expression was examined to further investigate the role of β-catenin in prostate cancer. Stable knockdown of β-catenin in LNCaP prostate cancer cells attenuated the androgen-regulated expression of KLK2, 3, 4 and 15, but not KLK14. To test whether KLK14 is instead a TCF:β-catenin target gene, the endogenous levels of β-catenin were increased by inhibiting its degradation. Although KLK14 expression was up-regulated by these treatments, siRNA knockdown of β-catenin demonstrated that this effect was independent of β-catenin. These results show that β-catenin is required for maximal expression of KLK2, 3, 4 and 15, but not KLK14. Developmental cells and tumour cells express a similar repertoire of signalling molecules, which means that these different cell types are responsive to one another. Previous reports have shown that stem cells and foetal tissues can reprogram aggressive cancer cells to less aggressive phenotypes by restoring the balance to developmental signalling pathways that are highly dysregulated in cancer. To investigate this phenomenon in prostate cancer, DU145 and PC-3 prostate cancer cells were cultured on matrices pre-conditioned with human embryonic stem cells (hESCs). Soft agar assays showed that prostate cancer cells exposed to hESC conditioned matrices had reduced clonogenicity compared with cells harvested from control matrices. A recent study demonstrated that this effect was partially due to hESC-derived Lefty, an antagonist of Nodal. A member of the transforming growth factor β (TGFβ) superfamily, Nodal regulates embryogenesis and is re-expressed in cancer. The role of Nodal in prostate cancer has not previously been reported. Therefore, the expression and function of the Nodal signalling pathway in prostate cancer was investigated. Western blots confirmed that Nodal is expressed in DU145 and PC-3 cells. Immunohistochemistry revealed greater expression of Nodal in malignant versus benign glands. Notably, the Nodal inhibitor, Lefty, was not expressed at the mRNA level in any prostate cell lines tested. The Nodal signalling pathway is functionally active in prostate cancer cells. Recombinant Nodal treatments triggered downstream phosphorylation of Smad2 in DU145 and LNCaP cells, and stably-transfected Nodal increased the clonogencity of LNCaP cells. Nodal was also found to modulate AR signalling. Nodal reduced the activity of an androgen-regulated KLK3 promoter construct in luciferase assays and attenuated the endogenous expression of AR target genes including prostatic kallikreins. These results demonstrate that Nodal is a novel example of a developmental signalling molecule that is reexpressed in prostate cancer and may have a functional role in prostate cancer progression. In summary, this project clarifies the role of androgens and changing cellular differentiation in prostate cancer by characterising the expression and function of the downstream genes encoding kallikrein-related serine proteases and Nodal. Furthermore, this study emphasises the similarities between prostate cancer and early development, and the crosstalk between developmental signalling pathways and the AR axis. The outcomes of this project also affirm the utility of the kallikrein locus as a model system to monitor tumour progression and the phenotype of prostate cancer cells.
Resumo:
Expert knowledge is valuable in many modelling endeavours, particularly where data is not extensive or sufficiently robust. In Bayesian statistics, expert opinion may be formulated as informative priors, to provide an honest reflection of the current state of knowledge, before updating this with new information. Technology is increasingly being exploited to help support the process of eliciting such information. This paper reviews the benefits that have been gained from utilizing technology in this way. These benefits can be structured within a six-step elicitation design framework proposed recently (Low Choy et al., 2009). We assume that the purpose of elicitation is to formulate a Bayesian statistical prior, either to provide a standalone expert-defined model, or for updating new data within a Bayesian analysis. We also assume that the model has been pre-specified before selecting the software. In this case, technology has the most to offer to: targeting what experts know (E2), eliciting and encoding expert opinions (E4), whilst enhancing accuracy (E5), and providing an effective and efficient protocol (E6). Benefits include: -providing an environment with familiar nuances (to make the expert comfortable) where experts can explore their knowledge from various perspectives (E2); -automating tedious or repetitive tasks, thereby minimizing calculation errors, as well as encouraging interaction between elicitors and experts (E5); -cognitive gains by educating users, enabling instant feedback (E2, E4-E5), and providing alternative methods of communicating assessments and feedback information, since experts think and learn differently; and -ensuring a repeatable and transparent protocol is used (E6).
Resumo:
Lateral gene transfer (LGT) from prokaryotes to microbial eukaryotes is usually detected by chance through genome-sequencing projects. Here, we explore a different, hypothesis-driven approach. We show that the fitness advantage associated with the transferred gene, typically invoked only in retrospect, can be used to design a functional screen capable of identifying postulated LGT cases. We hypothesized that beta-glucuronidase (gus) genes may be prone to LGT from bacteria to fungi (thought to lack gus) because this would enable fungi to utilize glucuronides in vertebrate urine as a carbon source. Using an enrichment procedure based on a glucose-releasing glucuronide analog (cellobiouronic acid), we isolated two gus(+) ascomycete fungi from soils (Penicillium canescens and Scopulariopsis sp.). A phylogenetic analysis suggested that their gus genes, as well as the gus genes identified in genomic sequences of the ascomycetes Aspergillus nidulans and Gibberella zeae, had been introgressed laterally from high-GC gram(+) bacteria. Two such bacteria (Arthrobacter spp.), isolated together with the gus(+) fungi, appeared to be the descendants of a bacterial donor organism from which gus had been transferred to fungi. This scenario was independently supported by similar substrate affinities of the encoded beta-glucuronidases, the absence of introns from fungal gus genes, and the similarity between the signal peptide-encoding 5' extensions of some fungal gus genes and the Arthrobacter sequences upstream of gus. Differences in the sequences of the fungal 5' extensions suggested at least two separate introgression events after the divergence of the two main Euascomycete classes. We suggest that deposition of glucuronides on soils as a result of the colonization of land by vertebrates may have favored LGT of gus from bacteria to fungi in soils.
Resumo:
Background The androgen receptor is a ligand-induced transcriptional factor, which plays an important role in normal development of the prostate as well as in the progression of prostate cancer to a hormone refractory state. We previously reported the identification of a novel AR coactivator protein, L-dopa decarboxylase (DDC), which can act at the cytoplasmic level to enhance AR activity. We have also shown that DDC is a neuroendocrine (NE) marker of prostate cancer and that its expression is increased after hormone-ablation therapy and progression to androgen independence. In the present study, we generated tetracycline-inducible LNCaP-DDC prostate cancer stable cells to identify DDC downstream target genes by oligonucleotide microarray analysis. Results Comparison of induced DDC overexpressing cells versus non-induced control cell lines revealed a number of changes in the expression of androgen-regulated transcripts encoding proteins with a variety of molecular functions, including signal transduction, binding and catalytic activities. There were a total of 35 differentially expressed genes, 25 up-regulated and 10 down-regulated, in the DDC overexpressing cell line. In particular, we found a well-known androgen induced gene, TMEPAI, which wasup-regulated in DDC overexpressing cells, supporting its known co-activation function. In addition, DDC also further augmented the transcriptional repression function of AR for a subset of androgen-repressed genes. Changes in cellular gene transcription detected by microarray analysis were confirmed for selected genes by quantitative real-time RT-PCR. Conclusion Taken together, our results provide evidence for linking DDC action with AR signaling, which may be important for orchestrating molecular changes responsible for prostate cancer progression.
Resumo:
Embedded generalized markup, as applied by digital humanists to the recording and studying of our textual cultural heritage, suffers from a number of serious technical drawbacks. As a result of its evolution from early printer control languages, generalized markup can only express a document’s ‘logical’ structure via a repertoire of permissible printed format structures. In addition to the well-researched overlap problem, the embedding of markup codes into texts that never had them when written leads to a number of further difficulties: the inclusion of potentially obsolescent technical and subjective information into texts that are supposed to be archivable for the long term, the manual encoding of information that could be better computed automatically, and the obscuring of the text by highly complex technical data. Many of these problems can be alleviated by asserting a separation between the versions of which many cultural heritage texts are composed, and their content. In this way the complex inter-connections between versions can be handled automatically, leaving only simple markup for individual versions to be handled by the user.
Resumo:
In plant cells, myosin is believed to be the molecular motor responsible for actin-based motility processes such as cytoplasmic streaming and directed vesicle transport. In an effort to characterize plant myosin, a cDNA encoding a myosin heavy chain was isolated from Arabidopsis thaliana. The predicted product of the MYA1 gene is 173 kDa and is structurally similar to the class V myosins. It is composed of the highly-conserved NH2-terminal "head" domain, a putative calmodulin-binding "neck" domain an alpha-helical coiled-coil domain, and a COOH-terminal domain. Northern blot analysis shows that the Arabidopsis MYA1 gene is expressed in all the major plant tissues (flower, leaf, root, and stem). We suggest that the MYA1 myosin may be involved in a general intracellular transport process in plant cells.
Resumo:
Non-pathogenic lactic acid bacteria are economically important Gram-positive bacteria used extensively in the food industry. Due to their “generally regarded as safe” status, certain species from the genera Lactobacillus and Lactococcus are also considered desirable as candidates for the production and secretion of recombinant proteins, particular those with therapeutic applications. The hypothesis examined by this thesis is that Lactococcus lactis can be modified to be an effective antimicrobial agent. Therefore, the aims of this thesis were to investigate the optimisation of the expression, secretion and/or activities of potential heterologous antimicrobial proteins by the model lactic acid bacterium, Lactococcus lactis subsp. cremoris MG1363. L. lactis strains were engineered to express and secrete the recombinant CyuC surface protein from Lactobacillus reuteri BR11, and a fusion protein consisting of CyuC and lysostaphin using the Sep promoter and secretion signal. CyuC has been characterised as a cystine-binding protein, but has also been demonstrated to have fibronectin binding activity. Lysostaphin is a bacteriolytic enzyme with specific activity against the Gram-positive pathogen, Staphylococcus aureus. These modified L. lactis strains were then investigated to see if they had the ability to inhibit the adhesion of S. aureus to host extracellular matrix (ECM) proteins. It was observed that the cell extracts of the L. lactis strain with the vector only (pGhost9:ISS1) was able to inhibit the adhesion of S. aureus to fibronectin, whilst the cell extracts of the L. lactis strain expressing lysostaphin was able to inhibit adhesion to keratin. Finally, this thesis has identified specific lactococcal genes that affect the secretion of lysostaphin through the use of random transposon mutagenesis. Ten mutants with higher lysostaphin activity contained insertions in four different genes encoding: (i) an uncharacterised putative transmembrane protein (llmg_0609), (ii) an enzyme catalysing the first step in peptidoglycan biosynthesis (murA2), (iii) a homolog of the oxidative defence regulator (trmA), and (iv) an uncharacterised putative enzyme involved in ubiquinone biosynthesis (llmg_2148). The higher lysostaphin activity observed in these mutants was found to be due to higher amounts of lysostaphin being secreted. The findings of this thesis contribute to the development of this organism as an antimicrobial agent and also to our understanding of L. lactis genetics.
Resumo:
Lactobacillus reuteri BR11 possesses an abundant cystine uptake (Cyu) ABC-transporter that was previously found to be involved in a novel mechanism of oxidative defence mediated by cystine. The current study aimed to elucidate this mechanism with a focus on the role of the co-transcribed cystathionine ã-lyase (Cgl). Growth studies of wild-type L. reuteri BR11 and mutants inactivated in cgl and the cystine-binding protein encoding gene cyuC showed that in contrast to the Cyu transporter, whose inactivation led to growth arrest in aerated cultures, Cgl is not crucial for oxidative defence. However, the role of Cgl in oxidative defence became apparent in the presence of severe oxidative damage and cysteine deprivation. Cysteine was found to be protective against oxidative stress, and the action of Cgl in both cysteine biosynthesis and degradation poses a seemingly futile pathway that deprives the intracellular cysteine pool. To further characterise the relationship between Cgl activity and cysteine and their roles in oxidative defence, enzymatic assays were performed on purified Cgl, and intracellular concentrations of cysteine, cystathionine and methionine were determined. Cgl was highly active towards cystine and cystathionine and less active towards cysteine in vitro, suggesting the main function of Cgl to be cysteine biosynthesis. Cysteine was found at high concentrations in the cell, but the levels were not significantly affected by inactivation of cgl or growth under aerobic conditions. It was concluded that both anabolic and catabolic activities of Cgl towards cysteine contribute to oxidative defence, the former by maintaining an intracellular reservoir of thiol analogous to glutathione, and the latter by producing H2S which is readily secreted, thus creating a reducing extracellular environment. The significance of the Cyu transporter to the physiology of L. reuteri BR11 prompted a phylogenetic study to determine its presence in bacteria. Orthologs of the Cyu transporter that are closest matches to the Cyu transporter are only limited to several species of Lactobacillus and Leuconostoc. Outside the Lactobacillales order, the closest matching orthologs belong to Proteobacteria, and there are more orthologs in Proteobacteria than non-Lactobacillales Firmicutes, suggesting that the Cyu transporter locus was present in the ancestor of the Proteobacteria and Firmicutes, and over evolutionary time has been lost or diverged in many Firmicutes. The clustering of the Cyu transporter locus with a gene encoding a Cgl family protein is even rarer. It was only found in L. reuteri, Lactobacillus vaginalis, Weissella paramesenteroides, the Lactobacillus casei group, and several Campylobacter sp. An accompanying phylogenetic study of L. reuteri BR11 using multi-locus sequence analysis showed that L. reuteri BR11 had diverged from more than 100 strains of L. reuteri isolated from various hosts and geographical locations. However, comparison with other Lactobacillus species supported the current classification of BR11 as L. reuteri. The most closely related species to L. reuteri is L. vaginalis or Lactobacillus antri, depending on the housekeeping gene used for analysis. The close evolutionary relationship of L. vaginalis to L. reuteri and the high degree of sequence identity between the cgl-cyuABC loci in both species suggest that the Cyu system is highly likely to perform similar functions in L. vaginalis. In search of other genes that function in oxidative defence, a number of mutants which were inactivated in genes that confer increased resistance to oxidative stress in other bacteria were constructed. The genes targeted were ahpC (peroxidase component of the alkyl hydroperoxide reductase system), tpx (thiol peroxidase), osmC (osmotically induced protein C), mntH (Mn2+/Fe2+ transporter), gshA (ã-glutamylcysteine synthetase) and msrA (methionine sulfoxide reductase). The ahpC and mntH mutants had slightly lower minimum inhibitory concentrations of organic peroxides, suggesting these genes might be involved in resistance to organic peroxides in L. reuteri. However, none of the mutants exhibited growth defects in aerated cultures, in stark contrast to the cyuC mutant. This may be due to compensatory functions of other genes, a hypothesis which cannot be tested until a robust protocol for constructing markerless multiple gene deletion mutants in L. reuteri is developed. These results highlight the importance of the Cyu transporter in oxidative defence and provide a foundation for extending the research of this system in other bacteria.
Resumo:
In this work two different finite volume computational strategies for solving a representative two-dimensional diffusion equation in an orthotropic medium are considered. When the diffusivity tensor is treated as linear, this problem admits an analytic solution used for analysing the accuracy of the proposed numerical methods. In the first method, the gradient approximation techniques discussed by Jayantha and Turner [Numerical Heat Transfer, Part B: Fundamentals, 40, pp.367–390, 2001] are applied directly to the
Resumo:
Nuclear Factor Y (NF-Y) transcription factor is a heterotrimer comprised of three subunits: NF-YA, NF-YB and NF-YC. Each of the three subunits in plants is encoded by multiple genes with differential expression profiles, implying the functional specialisation of NF-Y subunit members in plants. In this study, we investigated the roles of NF-YB members in the light-mediated regulation of photosynthesis genes. We identified two NF-YB members from Triticum aestivum (TaNF-YB3 & 7) which were markedly upregulated by light in the leaves and seedling shoots using quantitative RT-PCR. A genome-wide coexpression analysis of multiple Affymetrix Wheat Genome Array datasets revealed that TaNF-YB3-coexpressed transcripts were highly enriched with the Gene Ontology term photosynthesis. Transgenic wheat lines constitutively overexpressing TaNF-YB3 had a significant increase in the leaf chlorophyll content, photosynthesis rate and early growth rate. Quantitative RT-PCR analysis showed that the expression levels of a number of TaNF-YB3-coexpressed transcripts were elevated in the transgenic wheat lines. The mRNA level of TaGluTR encoding glutamyl-tRNA reductase, which catalyses the rate limiting step of the chlorophyll biosynthesis pathway, was significantly increased in the leaves of the transgenic wheat. Significant increases in the expression level in the transgenic plant leaves were also observed for four photosynthetic apparatus genes encoding chlorophyll a/b-binding proteins (Lhca4 and Lhcb4) and photosystem I reaction center subunits (subunit K and subunit N), as well as for a gene coding for chloroplast ATP synthase subunit. These results indicate that TaNF-YB3 is involved in the positive regulation of a number of photosynthesis genes in wheat.
Resumo:
Introduction and aims: For a scaffold material to be considered effective and efficient for tissue engineering it must be biocompatible as well as bioinductive. Silk fiber is a natural biocompatible material suitable for scaffold fabrication; however, silk is tissue-conductive and lacks tissue-inductive properties. One proposed method to make the scaffold tissue-inductive is to introduce plasmids or viruses encoding a specific growth factor into the scaffold. In this study, we constructed adenoviruses encoding bone morphogenetic protein-7 (BMP-7) and incorporated these into silk scaffolds. The osteo-inductive and new bone formation properties of these constructs were assessed in vivo in a critical-sized skull defect animal model. Materials and methods: Silk fibroin scaffolds containing adenovirus particles coding BMP-7 were prepared. The release of the adenovirus particles from the scaffolds was quantified by tissue-culture infective dose (TCID50) and the bioactivity of the released viruses was evaluated on human bone marrow mesenchymal stromal cells (BMSCs). To demonstrate the in vivo bone forming ability of the virus-carrying silk fibroin scaffold, the scaffold constructs were implanted into calvarial defects in SCID mice. Results: In vitro studies demonstrated that the virus-carrying silk fibroin scaffold released virus particles over a 3 week period while preserving their bioactivity. In vivo test of the scaffold constructs in critical-sized skull defect areas revealed that silk scaffolds were capable of delivering the adenovirus encoding BMP-7, resulting significantly enhanced new bone formation. Conclusions: Silk scaffolds carrying BMP-7 encoding adenoviruses can effectively transfect cells and enhance both in vitro and in vivo osteogenesis. The findings of this study indicate silk fibroin is a promising biomaterial for gene delivery to repair critical-sized bone defects.