899 resultados para Tele communication systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyber-physical systems tightly integrate physical processes and information and communication technologies. As today’s critical infrastructures, e.g., the power grid or water distribution networks, are complex cyber-physical systems, ensuring their safety and security becomes of paramount importance. Traditional safety analysis methods, such as HAZOP, are ill-suited to assess these systems. Furthermore, cybersecurity vulnerabilities are often not considered critical, because their effects on the physical processes are not fully understood. In this work, we present STPA-SafeSec, a novel analysis methodology for both safety and security. Its results show the dependencies between cybersecurity vulnerabilities and system safety. Using this information, the most effective mitigation strategies to ensure safety and security of the system can be readily identified. We apply STPA-SafeSec to a use case in the power grid domain, and highlight its benefits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SOUZA, Rodrigo B. ; MEDEIROS, Adelardo A. D. ; NASCIMENTO, João Maria A. ; GOMES, Heitor P. ; MAITELLI, André L. A Proposal to the Supervision of Processes in an Industrial Environment with Heterogeneous Systems. In: INTERNATIONAL CONFERENCE OF THE IEEEOF THE INDUSTRUI ELECTRONICS SOCIETY,32., Paris, 2006, Paris. Anais... Paris: IECON, 2006

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This keynote presentation will report some of our research work and experience on the development and applications of relevant methods, models, systems and simulation techniques in support of different types and various levels of decision making for business, management and engineering. In particular, the following topics will be covered. Modelling, multi-agent-based simulation and analysis of the allocation management of carbon dioxide emission permits in China (Nanfeng Liu & Shuliang Li Agent-based simulation of the dynamic evolution of enterprise carbon assets (Yin Zeng & Shuliang Li) A framework & system for extracting and representing project knowledge contexts using topic models and dynamic knowledge maps: a big data perspective (Jin Xu, Zheng Li, Shuliang Li & Yanyan Zhang) Open innovation: intelligent model, social media & complex adaptive system simulation (Shuliang Li & Jim Zheng Li) A framework, model and software prototype for modelling and simulation for deshopping behaviour and how companies respond (Shawkat Rahman & Shuliang Li) Integrating multiple agents, simulation, knowledge bases and fuzzy logic for international marketing decision making (Shuliang Li & Jim Zheng Li) A Web-based hybrid intelligent system for combined conventional, digital, mobile, social media and mobile marketing strategy formulation (Shuliang Li & Jim Zheng Li) A hybrid intelligent model for Web & social media dynamics, and evolutionary and adaptive branding (Shuliang Li) A hybrid paradigm for modelling, simulation and analysis of brand virality in social media (Shuliang Li & Jim Zheng Li) Network configuration management: attack paradigms and architectures for computer network survivability (Tero Karvinen & Shuliang Li)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite different from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experience of talking in person. Several causes for these differences have been identified and we propose inspiring and innovative solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational experience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic experiences to a multitude of users that for them will feel much more similar to having face to face meetings than the experience offered by conventional teleconferencing systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main features of the Greek currency are the big differences between emissions of the polis, which did not match either in their iconographic message types, not even in the met-rical pattern of their values. These differences were reflected in exchange systems ruled by the main sanctuaries that shrines stipu-lated thus giving official status to change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SOUZA, Rodrigo B. ; MEDEIROS, Adelardo A. D. ; NASCIMENTO, João Maria A. ; GOMES, Heitor P. ; MAITELLI, André L. A Proposal to the Supervision of Processes in an Industrial Environment with Heterogeneous Systems. In: INTERNATIONAL CONFERENCE OF THE IEEEOF THE INDUSTRUI ELECTRONICS SOCIETY,32., Paris, 2006, Paris. Anais... Paris: IECON, 2006

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibre-optic components and systems are used in a wide variety of industrial, medical and communication applications and can be found in use everywhere in the modern world, from the bottom of the ocean to satellites in orbit. The field of fibre optics has seen rapid growth in the past few decades to become an essential enabling technology. However, much more work is needed to develop components and systems that can work at wavelengths in the short-wavelength infrared (SWIR) / mid-IR part of the spectrum (defined in this work as 1.5 – 4.5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing pressure to increase the quality of health services, as well as reducing costs, has caused healthcare organizations to increase the use of Information and Communication Technologies (ICT) through the development and adoption of Healthcare Information Systems (HIS). However, the need for exchange of information between HIS and between organizations has also increased, resulting in the problem of interoperability. This problem is considered complex, but the use of Service Oriented Architecture (SOA) appears as a good way to address this issue. This paper presents a systematic review, performed in order to find out how and in which contexts SOA is being used to ensure the interoperability of HIS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information Technology (IT) can be an important component for innovation since enabling e-learning it can provide conditions to which the organization can work with new business and improved processes. In this regard, the Learning Management Systems (LMS) allows communication and interaction between teachers and students in virtual spaces. However the literature indicates that there are gaps in the researches, especially concerning the use of IT for the management of e-learning. The purpose of this paper is to analyze the available literature about the application of LMS for the e-learning management, seeking to present possibilities for researches in the field. An integrative literature review was performed considering the Web of Science, Scopus, Ebsco and Scielo databases, where 78 references were found, of which 25 were full papers. This analysis derives interesting characteristics from scientific studies, highlighting gaps and guidelines for future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular behavior is dependent on a variety of extracellular cues required for normal tissue function, wound healing, and activation of the immune system. Removed from their in vivo microenvironment and cultured in vitro, cells lose many environmental cues and that may result in abberant behavior, making it difficult to study cellular processes. In order to mimic native tissue environments, optical tweezer and microfluidic technologies were used to place cells within defined areas of the culture environment. To provide three dimensional supports found in natural tissues, hydrogel scaffolds of poly (ethylene glycol) diacrylate and the basement membrane matrix Matrigel were used. Optical tweezer technology allowed precision placement and formation of homotypic and heterotypic arrays of human U937, HEK 293, and porcine mesenchymal stem cells. Alternatively, two microfluidic devices were designed to pattern Matrigel scaffolds. The first microfluidic device utilized laminar flow to spatially pattern multiple cell types within the device. Gradients of soluble molecules were then be formed and manipulated across the Matrigel scaffolds. Patterning Matrigel using laminar flow techniques require microfluidic expertise and do not produce consistent patterning conditions, limiting their use difficult in most cell culture laboratories. Thus, a buried Matrigel polydimethylsiloxane (PDMS) device was developed for spatial patterning of biological scaffolds. Matrigel is injected into micron sized channels of PDMS fabricated by soft lithography and allowed to thermally cure. Following curing, a second PDMS device was placed on top of the buried Matrigel channels to support media flow. In order to validate these systems, a cell-cell communication model system was developed utilizing LPS and TNFα signaling with fluorescent reporter systems to monitor communication in real time. We demonstrated the utility of microfluidic devices to support the cell-cell communication model system by co culturing three cell types within Matrigel scaffolds and monitoring signaling activity via fluorescent reporters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid crystals (LCs) have revolutionized the display and communication technologies. Doping of LCs with inorganic nanoparticles such as carbon nanotubes, gold nanoparticles and ferroelectric nanoparticles have garnered the interest of research community as they aid in improving the electro-optic performance. In this thesis, we examine a hybrid nanocomposite comprising of 5CB liquid crystal and block copolymer functionalized barium titanate ferroelectric nanoparticles. This hybrid system exhibits a giant soft-memory effect. Here, spontaneous polarization of ferroelectric nanoparticles couples synergistically with the radially aligned BCP chains to create nanoscopic domains that can be rotated electromechanically and locked in space even after the removal of the applied electric field. The resulting non-volatile memory is several times larger than the non-functionalized sample and provides an insight into the role of non-covalent polymer functionalization. We also present the latest results from the dielectric and spectroscopic study of field assisted alignment of gold nanorods.