990 resultados para Tandem-MAG
Resumo:
Efavirenz (EFV) is principally metabolized by CYP2B6 to 8-hydroxy-efavirenz (8OH-EFV) and to a lesser extent by CYP2A6 to 7-hydroxy-efavirenz (7OH-EFV). So far, most metabolite profile analyses have been restricted to 8OH-EFV, 7OH-EFV, and EFV-N-glucuronide, even though these metabolites represent a minor percentage of EFV metabolites present in vivo. We have performed a quantitative phase I and II metabolite profile analysis by tandem mass spectrometry of plasma, cerebrospinal fluid (CSF), and urine samples in 71 human immunodeficiency virus patients taking efavirenz, prior to and after enzymatic (glucuronidase and sulfatase) hydrolysis. We have shown that phase II metabolites constitute the major part of the known circulating efavirenz species in humans. The 8OH-EFV-glucuronide (gln) and 8OH-EFV-sulfate (identified for the first time) in humans were found to be 64- and 7-fold higher than the parent 8OH-EFV, respectively. In individuals (n = 67) genotyped for CYP2B6, 2A6, and CYP3A metabolic pathways, 8OH-EFV/EFV ratios in plasma were an index of CYP2B6 phenotypic activity (P < 0.0001), which was also reflected by phase II metabolites 8OH-EFV-glucuronide/EFV and 8OH-EFV-sulfate/EFV ratios. Neither EFV nor 8OH-EFV, nor any other considered metabolites in plasma were associated with an increased risk of central nervous system (CNS) toxicity. In CSF, 8OH-EFV levels were not influenced by CYP2B6 genotypes and did not predict CNS toxicity. The phase II metabolites 8OH-EFV-gln, 8OH-EFV-sulfate, and 7OH-EFV-gln were present in CSF at 2- to 9-fold higher concentrations than 8OH-EFV. The potential contribution of known and previously unreported EFV metabolites in CSF to the neuropsychological effects of efavirenz needs to be further examined in larger cohort studies.
Resumo:
Renal denervation can reduce blood pressure in patients with uncontrolled hypertension. The adherence to prescribed antihypertensive medication following renal denervation is unknown. This study investigated adherence to prescribed antihypertensive treatment by liquid chromatography-high resolution tandem mass spectrometry in plasma and urine at baseline and 6 months after renal denervation in 100 patients with resistant hypertension, defined as baseline office systolic blood pressure ≥140 mmHg despite treatment with ≥3 antihypertensive agents. At baseline, complete adherence to all prescribed antihypertensive agents was observed in 52 patients, 46 patients were partially adherent, and two patients were completely non-adherent. Baseline office blood pressure was 167/88 ± 19/16 mmHg with a corresponding 24-h blood pressure of 154/86 ± 15/13 mmHg. Renal denervation significantly reduced office and ambulatory blood pressure at 6-month follow-up by 15/5 mmHg (p < 0.001/p < 0.001) and 8/4 mmHg (p < 0.001/p = 0.001), respectively. Mean adherence to prescribed treatment was significantly reduced from 85.0 % at baseline to 80.7 %, 6 months after renal denervation (p = 0.005). The blood pressure decrease was not explained by improvements in adherence following the procedure. Patients not responding to treatment significantly reduced their drug intake following the procedure. Adherence was highest for angiotensin-converting enzyme inhibitors/angiotensin receptor blockers and beta blockers (>90 %) and lowest for vasodilators (21 %). In conclusion, renal denervation can reduce office and ambulatory blood pressure in patients with resistant hypertension despite a significant reduction in adherence to antihypertensive treatment after 6 months.
Resumo:
Diabetic retinopathy is the leading cause of visual loss in individuals under the age of 55. Most investigations into the pathogenesis of diabetic retinopathy have been concentrated on the neural retina since this is where clinical lesions are manifested. Recently, however, various abnormalities in the structural and secretory functions of retinal pigment epithelium that are essential for neuroretina survival, have been found in diabetic retinopathy. In this context, here we study the effect of hyperglycemic and hypoxic conditions on the metabolism of a human retinal pigment epithelial cell line (ARPE-19) by integrating quantitative proteomics using tandem mass tagging (TMT), untargeted metabolomics using MS and NMR, and 13C-glucose isotopic labeling for metabolic tracking. We observed a remarkable metabolic diversification under our simulated in vitro hyperglycemic conditions of diabetes, characterized increased flux through polyol pathways and inhibition of the Krebs cycle and oxidative phosphorylation. Importantly, under low oxygen supply RPE cells seem to consume rapidly glycogen storages and stimulate anaerobic glycolysis. Our results therefore pave the way to future scenarios involving new therapeutic strategies addressed to modulating RPE metabolic impairment, with the aim of regulating structural and secretory alterations of RPE. Finally, this study shows the importance of tackling biomedical problems by integrating metabolomic and proteomics results.
Resumo:
Species may cope with rapid habitat changes by distribution shifts or adaptation to new conditions. A common feature of these responses is that they depend on how the process of dispersal connects populations, both demographically and genetically. We analyzed the genetic structure of a near-threatened high-Arctic seabird, the ivory gull (Pagophila eburnea) in order to infer the connectivity among gull colonies. We analyzed 343 individuals sampled from 16 localities across the circumpolar breeding range of ivory gulls, from northern Russia to the Canadian Arctic. To explore the roles of natal and breeding dispersal, we developed a population genetic model to relate dispersal behavior to the observed genetic structure of worldwide ivory gull populations. Our key finding is the striking genetic homogeneity of ivory gulls across their entire distribution range. The lack of population genetic structure found among colonies, in tandem with independent evidence of movement among colonies, suggests that ongoing effective dispersal is occurring across the Arctic Region. Our results contradict the dispersal patterns generally observed in seabirds where species movement capabilities are often not indicative of dispersal patterns. Model predictions show how natal and breeding dispersal may combine to shape the genetic homogeneity among ivory gull colonies separated by up to 2800 km. Although field data will be key to determine the role of dispersal for the demography of local colonies and refine the respective impacts of natal versus breeding dispersal, conservation planning needs to consider ivory gulls as a genetically homogeneous, Arctic-wide metapopulation effectively connected through dispersal.
Resumo:
Mycoplasma mycoides subsp. capri (Mmc) and subsp. mycoides (Mmm) are important ruminant pathogens worldwide causing diseases such as pleuropneumonia, mastitis and septicaemia. They express galactofuranose residues on their surface, but their role in pathogenesis has not yet been determined. The M. mycoides genomes contain up to several copies of the glf gene, which encodes an enzyme catalysing the last step in the synthesis of galactofuranose. We generated a deletion of the glf gene in a strain of Mmc using genome transplantation and tandem repeat endonuclease coupled cleavage (TREC) with yeast as an intermediary host for the genome editing. As expected, the resulting YCp1.1-Δglf strain did not produce the galactofuranose-containing glycans as shown by immunoblots and immuno-electronmicroscopy employing a galactofuranose specific monoclonal antibody. The mutant lacking galactofuranose exhibited a decreased growth rate and a significantly enhanced adhesion to small ruminant cells. The mutant was also 'leaking' as revealed by a β-galactosidase-based assay employing a membrane impermeable substrate. These findings indicate that galactofuranose-containing polysaccharides conceal adhesins and are important for membrane integrity. Unexpectedly, the mutant strain showed increased serum resistance.
Resumo:
BACKGROUND: Autologous blood transfusion (ABT) efficiently increases sport performance and is the most challenging doping method to detect. Current methods for detecting this practice center on the plasticizer di(2-ethlyhexyl) phthalate (DEHP), which enters the stored blood from blood bags. Quantification of this plasticizer and its metabolites in urine can detect the transfusion of autologous blood stored in these bags. However, DEHP-free blood bags are available on the market, including n-butyryl-tri-(n-hexyl)-citrate (BTHC) blood bags. Athletes may shift to using such bags to avoid the detection of urinary DEHP metabolites. STUDY DESIGN AND METHODS: A clinical randomized double-blinded two-phase study was conducted of healthy male volunteers who underwent ABT using DEHP-containing or BTHC blood bags. All subjects received a saline injection for the control phase and a blood donation followed by ABT 36 days later. Kinetic excretion of five urinary DEHP metabolites was quantified with liquid chromatography coupled with tandem mass spectrometry. RESULTS: Surprisingly, considerable levels of urinary DEHP metabolites were observed up to 1 day after blood transfusion with BTHC blood bags. The long-term metabolites mono-(2-ethyl-5-carboxypentyl) phthalate and mono-(2-carboxymethylhexyl) phthalate were the most sensitive biomarkers to detect ABT with BTHC blood bags. Levels of DEHP were high in BTHC bags (6.6%), the tubing in the transfusion kit (25.2%), and the white blood cell filter (22.3%). CONCLUSIONS: The BTHC bag contained DEHP, despite being labeled DEHP-free. Urinary DEHP metabolite measurement is a cost-effective way to detect ABT in the antidoping field even when BTHC bags are used for blood storage.
Resumo:
Identification of CD8+ cytotoxic T lymphocyte (CTL) epitopes has traditionally relied upon testing of overlapping peptide libraries for their reactivity with T cells in vitro. Here, we pursued deep ligand sequencing (DLS) as an alternative method of directly identifying those ligands that are epitopes presented to CTLs by the class I human leukocyte antigens (HLA) of infected cells. Soluble class I HLA-A*11:01 (sHLA) was gathered from HIV-1 NL4-3-infected human CD4+ SUP-T1 cells. HLA-A*11:01 harvested from infected cells was immunoaffinity purified and acid boiled to release heavy and light chains from peptide ligands that were then recovered by size-exclusion filtration. The ligands were first fractionated by high-pH high-pressure liquid chromatography and then subjected to separation by nano-liquid chromatography (nano-LC)–mass spectrometry (MS) at low pH. Approximately 10 million ions were selected for sequencing by tandem mass spectrometry (MS/MS). HLA-A*11:01 ligand sequences were determined with PEAKS software and confirmed by comparison to spectra generated from synthetic peptides. DLS identified 42 viral ligands presented by HLA-A*11:01, and 37 of these were previously undetected. These data demonstrate that (i) HIV-1 Gag and Nef are extensively sampled, (ii) ligand length variants are prevalent, particularly within Gag and Nef hot spots where ligand sequences overlap, (iii) noncanonical ligands are T cell reactive, and (iv) HIV-1 ligands are derived from de novo synthesis rather than endocytic sampling. Next-generation immunotherapies must factor these nascent HIV-1 ligand length variants and the finding that CTL-reactive epitopes may be absent during infection of CD4+ T cells into strategies designed to enhance T cell immunity.
Resumo:
The User-centered design (UCD) game is a tool forhuman-computer interaction practitioners to demonstrate the key user-centered design methodsand how they interrelate in the design process in an interactive and participatory manner. The target audiences are departments and institutions unfamiliar with UCD but whose work is related to the definition, creation, and update of a product or service.
Resumo:
The User-centered design (UCD) Gymkhana is a tool for human-computer interaction practitioners to demonstrate through a game the key user-centered design methods and how they interrelate in the design process.The target audiences are other organizational departments unfamiliar with UCD but whose work is related to the definition, cretaion, and update of a product service.
Resumo:
The paper presents the results of the piloting or pilot test in a virtual classroom. This e-portfolio was carried out in the 2005-2006 academic year, with students of the Doctorate in Information Society, at the Open University of Catalonia. The electronic portfolio is a strategy for competence based assessment. This experience shows the types of e-portfolios, where students show their work without interactions, and apply the competence-based learning theories in an interactive portfolio system. The real process of learning is developed in the competency based system, the portfolio not only is a basic bio document, has become a real space for learning with competence model. The paper brings out new ideas and possibilities: the competence-based learning promotes closer relationships between universities and companies and redesigns the pedagogic act.
Resumo:
This work presents a comparison between three analytical methods developed for the simultaneous determination of eight quinolones regulated by the European Union (marbofloxacin, ciprofloxacin, danofloxacin, enrofloxacin, difloxacin, sarafloxacin, oxolinic acid and flumequine) in pig muscle, using liquid chromatography with fluorescence detection (LC-FD), liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The procedures involve an extraction of the quinolones from the tissues, a step for clean-up and preconcentration of the analytes by solid-phase extraction and a subsequent liquid chromatographic analysis. The limits of detection of the methods ranged from 0.1 to 2.1 ng g−1 using LC-FD, from 0.3 to 1.8 using LC-MS and from 0.2 to 0.3 using LC-MS/MS, while inter- and intra-day variability was under 15 % in all cases. Most of those data are notably lower than the maximum residue limits established by the European Union for quinolones in pig tissues. The methods have been applied for the determination of quinolones in six different commercial pig muscle samples purchased in different supermarkets located in the city of Granada (south-east Spain).
Resumo:
The most relevant advances on the analytical applications of glutathione determination based on glutathione redox cycle and the antioxidant system are given. The main enzymes that participate of the glutathione metabolism are the glutathione peroxidase and glutathione reductase. The glutathione peroxidase has a major role in the removal of hydrogen peroxide and lipid peroxides from the cells. These enzymes, operating in tandem with catalase and superoxide dismutase promote a scavenging of oxyradical products in tissues minimizing damages caused by these species. Reduced glutathione is the major intracellular thiol found in mammals and changes in the glutathione concentration in biological fluids or tissues may provide a useful marker in certain disorders like hemolytic anemia, myocardial oxidative stress and in the investigation of some kinds of cancers. Particular attention is devoted to the main advantages supplied by biosensors in which there is an incorporation of bioactive materials for the glutathione determination. The correlation between stability and sensitivity of some reduced glutathione electrochemical sensors is discussed.
Resumo:
This study is aimed to clarify the association between MDMA cumulative use and cognitive dysfunction, and the potential role of candidate genetic polymorphisms in explaining individual differences in the cognitive effects of MDMA. Gene polymorphisms related to reduced serotonin function, poor competency of executive control and memory consolidation systems, and high enzymatic activity linked to bioactivation of MDMA to neurotoxic metabolites may contribute to explain variations in the cognitive impact of MDMA across regular users of this drug. Sixty ecstasy polydrug users, 110 cannabis users and 93 non-drug users were assessed using cognitive measures of Verbal Memory (California Verbal Learning Test, CVLT), Visual Memory (Rey-Osterrieth Complex Figure Test, ROCFT), Semantic Fluency, and Perceptual Attention (Symbol Digit Modalities Test, SDMT). Participants were also genotyped for polymorphisms within the 5HTT, 5HTR2A, COMT, CYP2D6, BDNF, and GRIN2B genes using polymerase chain reaction and TaqMan polymerase assays. Lifetime cumulative MDMA use was significantly associated with poorer performance on visuospatial memory and perceptual attention. Heavy MDMA users (>100 tablets lifetime use) interacted with candidate gene polymorphisms in explaining individual differences in cognitive performance between MDMA users and controls. MDMA users carrying COMT val/val and SERT s/s had poorer performance than paired controls on visuospatial attention and memory, and MDMA users with CYP2D6 ultra-rapid metabolizers performed worse than controls on semantic fluency. Both MDMA lifetime use and gene-related individual differences influence cognitive dysfunction in ecstasy users.
Resumo:
Although the efficacy of methadone maintenance treatment (MMT) in opioid dependence disorder has been well established, the influence of methadone pharmacokinetics in dose requirement and clinical outcome remains controversial. The aim of this study is to analyze methadone dosage in responder and nonresponder patients considering pharmacogenetic and pharmacokinetic factors that may contribute to dosage adequacy. Opioid dependence patients (meeting Diagnostic and Statistical Manual of Mental Disorders, [4th Edition] criteria) from a MMT community program were recruited. Patients were clinically assessed and blood samples were obtained to determine plasma concentrations of (R,S)-, (R) and (S)- methadone and to study allelic variants of genes encoding CYP3A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, and P-glycoprotein. Responders and nonresponders were defined by illicit opioid consumption detected in random urinalysis. The final sample consisted in 105 opioid dependent patients of Caucasian origin. Responder patients received higher doses of methadone and have been included into treatment for a longer period. No differences were found in terms of genotype frequencies between groups. Only CYP2D6 metabolizing phenotype differences were found in outcome status, methadone dose requirements, and plasma concentrations, being higher in the ultrarapid metabolizers. No other differences were found between phenotype and responder status, methadone dose requirements, neither in methadone plasma concentrations. Pharmacokinetic factors could explain some but not all differences in MMT outcome and methadone dose requirements.
Resumo:
Diplomityö on osa KaskiTec 2010 projektia. Työn tavoitteena oli tehostaa Lametal Oy:n hitsausrobotin käyttöä. Tehostamisella pyrittiin robotin käyttöasteen ja tuottavuuden kohottamiseen ja sitä kautta parantamaan investoinnin kannattavuutta. Työ on jaettu teoriaosaan ja soveltavaan osaan. Teoriaosassa käsitellään yleisesti robottihitsausta ja hitsauksen tuottavuutta. Lähdeaineistona on käytetty alan kirjallisuutta. Soveltavassa osassa käsitellään työn käytännön osuutta yrityksessä. Työn alkuvaiheessa kartoitettiin yrityksen lähtötilanne, selvitettiin pahimmat ongelmakohdat ja etsittiin ongelmiin parannuskeinoja. Tutkimusmenetelminä yrityksessä käytettiin havainnointia, henkilöhaastatteluita sekä tilastollisia ja laskennallisia menetelmiä. Seurattavaksi valittiin tuottavuuden tunnuslukuja, joiden perusteella voitiin arvioida tehostamistoimenpiteiden vaikutuksia. Yrityksessä kartoitettujen ongelmien perusteella ryhdyttiin nostamaan robotin käyttöastetta, kehittämään tuotannonohjausta, robotin materiaalivirtoja ja layoutia. Käyttöastetta nostettiin viemällä robotille uusia hitsattavia tuotteita. Työssä selvitettiin yrityksessä jo olemassa oleva tuotannonohjausjärjestelmän soveltuvuus hitsausrobotin ohjaukseen. Materiaalivirtojen sujuvuutta ja layoutia kehitettiin yhdessä muiden KaskiTec- projektin osapuolten kanssa.