982 resultados para TROPHOBLAST GIANT CELLS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In3+ was used as dopant for BaZrO3 proton conductor and 30 at%-doped BaZrO3 samples (BaZr0.7In 0.3O3-δ, BZI) were prepared as electrolyte materials for proton-conducting solid oxide fuel cells (SOFCs). The BZI material showed a much improved sinteractivity compared with the conventional Y-doped BaZrO 3. The BZI pellets reached almost full density after sintering at 1600 °C for 10 h, whereas the Y-doped BaZrO3 samples still remained porous under the same sintering conditions. The conductivity measurements indicated that BZI pellets showed smaller bulk but improved grain boundary proton conductivity, when compared with Y-doped BaZrO3 samples. A total proton conductivity of 1.7 × 10-3 S cm -1 was obtained for the BZI sample at 700 °C in wet 10% H 2 atmosphere. The BZI electrolyte material also showed adequate chemical stability against CO2 and H2O, which is promising for application in fuel cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cell suspension cultures, established from the friable callus which was risen from the nodal segments of Dioscorea bulbifera L. in Murashige-Skoog (MS) medium supplemented with indole-3-butryic acid (20 mg L- 1), was examined for cell growth in MS medium fed with cholesterol (50 mg L- 1 and 100 mg L- 1) after 8, 10, 12, 14, 16, and 18 days of culture. The growth index of the cell suspension culture on the 8th day was 1.2 and gradually inclined to 1.9 on the 16th day and remained the same at the 18th day. There is no marked difference in the cell growth of cholesterol-treated and control cell suspension culture. The maximum accumulation of diosgenin was noticed on the 14th day in control and cholesterol-treated cell suspension culture and immobilised cell cultures. The highest concentration of diosgenin, 2.94% and 2.14% dry weight, was obtained in immobilised cell culture and cell suspension culture treated with 100 mg L- 1 cholesterol, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stroke, ischemic or hemorrhagic, belongs among the foremost causes of death and disability worldwide. Massive brain swelling is the leading cause of death in large hemispheric strokes and is only modestly alleviated by available treatment. Thrombolysis with tissue plasminogen activator (TPA) is the only approved therapy in acute ischemic stroke, but fear of TPA-mediated hemorrhage is often a reason for withholding this otherwise beneficial treatment. In addition, recanalization of the occluded artery (spontaneously or with thrombolysis) may cause reperfusion injury by promoting brain edema, hemorrhage, and inflammatory cell infiltration. A dominant event underlying these phenomena seems to be disruption of the blood-brain barrier (BBB). In contrast to ischemic stroke, no widely approved clinical therapy exists for intracerebral hemorrhage (ICH), which is associated with poor outcome mainly due to the mass effect of enlarging hematoma and associated brain swelling. Mast cells (MCs) are perivascularly located resident inflammatory cells which contain potent vasoactive, proteolytic, and fibrinolytic substances in their cytoplasmic granules. Experiments from our laboratory showed MC density and their state of granulation to be altered early following focal transient cerebral ischemia, and degranulating MCs were associated with perivascular edema and hemorrhage. (I) Pharmacological MC stabilization led to significantly reduced ischemic brain swelling (40%) and BBB leakage (50%), whereas pharmacological MC degranulation raised these by 90% and 50%, respectively. Pharmacological MC stabilization also revealed a 40% reduction in neutrophil infiltration. Moreover, genetic MC deficiency was associated with an almost 60% reduction in brain swelling, 50% reduction in BBB leakage, and 50% less neutrophil infiltration, compared with controls. (II) TPA induced MC degranulation in vitro. In vivo experiments with post-ischemic TPA administration demonstrated 70- to 100-fold increases in hemorrhage formation (HF) compared with controls HF. HF was significantly reduced by pharmacological MC stabilization at 3 (95%), 6 (75%), and 24 hours (95%) of follow-up. Genetic MC deficiency again supported the role of MCs, leading to 90% reduction in HF at 6 and 24 hours. Pharmacological MC stabilization and genetic MC deficiency were also associated with significant reduction in brain swelling and in neutrophil infiltration. Importantly, these effects translated into a significantly better neurological outcome and lower mortality after 24 hours. (III) Finally, in ICH experiments, pharmacological MC stabilization resulted in significantly less brain swelling, diminished growth in hematoma volume, better neurological scores, and decreased mortality. Pharmacological MC degranulation produced the opposite effects. Genetic MC deficiency revealed a beneficial effect similar to that found with pharmacological MC stabilization. In sum, the role of MCs in these clinically relevant scenarios is supported by a series of experiments performed both in vitro and in vivo. That not only genetic MC deficiency but also drugs targeting MCs could modulate these parameters (translated into better outcome and decreased mortality), suggests a potential therapeutic approach in a number of highly prevalent cerebral insults in which extensive tissue injury is followed by dangerous brain swelling and inflammatory cell infiltration. Furthermore, these experiments could hint at a novel therapy to improve the safety of thrombolytics, and a potential cellular target for those seeking novel forms of treatment for ICH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding mechanisms associated with the emergence of castration resistant prostate cancer cells (CRPC) after androgen deprivation therapy (ADT) is essential to create new therapeutic agents to counteract this aggressive form of prostate cancer (PCa). Because proteases are involved in almost all cancer associated mechanisms such as cell proliferation, invasion and metastasis, we are interested in their modulation in PCa after ADT and their involvement in CRPC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article presents an overview on Nafion membranes highlighting their merits and demerits with efforts on modified-Nafion membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gas-diffusion layer (GDL) influences the performance of electrodes employed with polymer electrolyte fuel cells (PEFCs). A simple and effective method for incorporating a porous structure in the electrode GDL using sucrose as the pore former is reported. Optimal (50 w/o) incorporation of a pore former in the electrode GDL facilitates the access of the gaseous reactants to the catalyst sites and improves the fuel cell performance. Data obtained from permeability and porosity measurements, single-cell performance, and impedance spectroscopy suggest that an optimal porosity helps mitigating mass-polarization losses in the fuel cell resulting in a substantially enhanced performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the presence of nonstructural protein 1 (NS1)-specific antibodies in a significant proportion of convalescent-phase human serum samples obtained from a cohort in an area where Japanese encephalitis virus (JEV) is endemic. Sera containing antibodies to NS1 but not those with antibodies to other JEV proteins, such as envelope, brought about complement-mediated lysis of JEV-infected BHK-21 cells. Target cells infected with a recombinant poxvirus expressing JEV NS1 on the cell surface confirmed the NS1 specificity of cytolytic antibodies. Mouse anti-NS1 cytolytic sera caused a complement-dependent reduction in virus output from infected human cells, demonstrating their important role in viral control. Antibodies elicited by JEV NS1 did not cross lyse West Nile virus- or dengue virus-infected cells despite immunoprecipitating the NS1 proteins of these related flaviviruses. Additionally, JEV NS1 failed to bind complement factor H, in contrast to NS1 of West Nile virus, suggesting that the NS1 proteins of different flaviviruses have distinctly different mechanisms for interacting with the host. Our results also point to an important role for JEV NS1-specific human immune responses in protection against JE and provide a strong case for inclusion of the NS1 protein in next generation of JEV vaccines.