963 resultados para TRANSFER EXCITED-STATES
Resumo:
Nature is challenged to move charge efficiently over many length scales. From sub-nm to μm distances, electron-transfer proteins orchestrate energy conversion, storage, and release both inside and outside the cell. Uncovering the detailed mechanisms of biological electron-transfer reactions, which are often coupled to bond-breaking and bond-making events, is essential to designing durable, artificial energy conversion systems that mimic the specificity and efficiency of their natural counterparts. Here, we use theoretical modeling of long-distance charge hopping (Chapter 3), synthetic donor-bridge-acceptor molecules (Chapters 4, 5, and 6), and de novo protein design (Chapters 5 and 6) to investigate general principles that govern light-driven and electrochemically driven electron-transfer reactions in biology. We show that fast, μm-distance charge hopping along bacterial nanowires requires closely packed charge carriers with low reorganization energies (Chapter 3); singlet excited-state electronic polarization of supermolecular electron donors can attenuate intersystem crossing yields to lower-energy, oppositely polarized, donor triplet states (Chapter 4); the effective static dielectric constant of a small (~100 residue) de novo designed 4-helical protein bundle can change upon phototriggering an electron transfer event in the protein interior, providing a means to slow the charge-recombination reaction (Chapter 5); and a tightly-packed de novo designed 4-helix protein bundle can drastically alter charge-transfer driving forces of photo-induced amino acid radical formation in the bundle interior, effectively turning off a light-driven oxidation reaction that occurs in organic solvent (Chapter 6). This work leverages unique insights gleaned from proteins designed from scratch that bind synthetic donor-bridge-acceptor molecules that can also be studied in organic solvents, opening new avenues of exploration into the factors critical for protein control of charge flow in biology.
Resumo:
Predicted 20 years ago, positron binding to neutral atoms has not yet been observed experimentally. A scheme is proposed to detect positron-atom bound states by colliding Rydberg positronium (Ps) with neutral atoms. Estimates of the charge-transfer reaction cross section are obtained using the first Born approximation for a selection of neutral atom targets and a wide range of incident Ps energies and principal quantum numbers. We also estimate the corresponding Ps ionization cross section. The accuracy of the calculations is tested by comparison with earlier predictions for charge transfer in Ps collisions with hydrogen and antihydrogen. We describe an existing Rydberg Ps beam suitable for producing positron-atom bound states and estimate signal rates based on the calculated cross sections and realistic experimental parameters. We conclude that the proposed methodology is capable of producing such states and of testing theoretical predictions of their binding energies.
Resumo:
Numerical predictions of the turbulent flow and heat transfer of a stationary duct with square ribs 45° angled to the main flow direction are presented. The rib height to channel hydraulic diameter is 0.1, the rib pitch to rib height is 10. The calculations have been carried out for a bulk Reynolds number of 50,000. The flows generated by ribs are dominated by separating and reattaching shear layers with vortex shedding and secondary flows in the cross-section. The hybrid RANS-LES approach is adopted to simulate such flows at a reasonable computation cost. The capability of the various versions of DES method, depending the RANS model, such as DES-SA, DES-RKE, DES-SST, have been compared and validated against the experiment. The significant effect of RANS model on the accuracy of the DES prediction has been shown. The DES-SST method, which was able to reproduce the correct physics of flow and heat transfer in a ribbed duct showed better performance than others.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Spelling is an important literacy skill, and learning to spell is an important component of learning to write. Learners with strong spelling skills also exhibit greater reading, vocabulary, and orthographic knowledge than those with poor spelling skills (Ehri & Rosenthal, 2007; Ehri & Wilce, 1987; Rankin, Bruning, Timme, & Katkanant, 1993). English, being a deep orthography, has inconsistent sound-to-letter correspondences (Seymour, 2005; Ziegler & Goswami, 2005). This poses a great challenge for learners in gaining spelling fluency and accuracy. The purpose of the present study is to examine cross-linguistic transfer of English vowel spellings in Spanish-speaking adult ESL learners. The research participants were 129 Spanish-speaking adult ESL learners and 104 native English-speaking GED students enrolled in a community college located in the South Atlantic region of the United States. The adult ESL participants were in classes at three different levels of English proficiency: advanced, intermediate, and beginning. An experimental English spelling test was administered to both the native English-speaking and ESL participants. In addition, the adult ESL participants took the standardized spelling tests to rank their spelling skills in both English and Spanish. The data were analyzed using robust regression and Poisson regression procedures, Mann-Whitney test, and descriptive statistics. The study found that both Spanish spelling skills and English proficiency are strong predictors of English spelling skills. Spanish spelling is also a strong predictor of level of L1-influenced transfer. More proficient Spanish spellers made significantly fewer L1-influenced spelling errors than less proficient Spanish spellers. L1-influenced transfer of spelling knowledge from Spanish to English likely occurred in three vowel targets (/ɑɪ/ spelled as ae, ai, or ay, /ɑʊ/ spelled as au, and /eɪ/ spelled as e). The ESL participants and the native English-speaking participants produced highly similar error patterns of English vowel spellings when the errors did not indicate L1-influenced transfer, which implies that the two groups might follow similar trajectories of developing English spelling skills. The findings may help guide future researchers or practitioners to modify and develop instructional spelling intervention to meet the needs of adult ESL learners and help them gain English spelling competence.
Resumo:
This study examines the factors facilitating the transfer admission of students broadly classified as Black from a single community college into a selective engineering college. The work aims to further research on STEM preparation and performance for students of color, as well as scholarship on increasing access to four-year institutions from two-year schools. Factors illuminating Underrepresented Racial and Ethnic Minority (URM) student pathways through Science, Technology, Engineering, and Mathematics (STEM) degree programs have often been examined through large-scale quantitative studies. However, this qualitative study complements quantitative data through demographic questionnaires, as well as semi-structured individual and group. The backgrounds and voices of diverse Black transfer students in four-year engineering degree programs were captured through these methods. Major findings from this research include evidence that community college faculty, peer networks, and family members facilitated transfer. Other results distinguish Black African from Black American transfers; included in these distinctions are depictions of different K-12 schooling experiences and differences in how participants self-identified. The findings that result from this research build upon the few studies that account for expanded dimensions of student diversity within the Black population. Among other demographic data, participants’ countries of birth and years of migration to the U.S. (if applicable) are included. Interviews reveal participants’ perceptions of factors impacting their educational trajectories in STEM and subsequent ability to transfer into a competitive undergraduate engineering program. This study is inclusive of, and reveals an important shifting demographic within the United States of America, Black Africans, who represent one of the fastest-growing segments of the immigrant population.
Resumo:
Traditional organic chemistry has long been dominated by ground state thermal reactions. The alternative to this is excited state chemistry, which uses light to drive chemical transformations. There is considerable interest in using this clean renewable energy source due to concerns surrounding the combustion byproducts associated with the consumption of fossil fuels. The work presented in this text will focus on the use of light (both ultraviolet and visible) for the following quantitative chemical transformations: (1) the release of compounds containing carboxylic acid and alcohol functional groups and (2) the conversion of carbon dioxide into other useable chemicals. Chapters 1-3 will introduce and explore the use of photoremovable protecting groups (PPGs) for the spatiotemporal control of molecular concentrations. Two new PPGs are discussed, the 2,2,2-tribromoethoxy group for the protection of carboxylic acids and the 9-phenyl-9-tritylone group for the protection of alcohols. Fundamental interest in the factors that affect C–X bond breaking has driven the work presented in this text for the release of carboxylic acid substrates. Product analysis from the UV photolysis of 2,2,2-tribromoethyl-(2′-phenylacetate) in various solvents results in the formation of H–atom abstraction products as well as the release of phenylacetic acid. The deprotection of alcohols is realized through the use of UV or visible light photolysis of 9-phenyl-9-tritylone ethers. Central to this study is the use of photoinduced electron transfer chemistry for the generation of ion diradicals capable of undergoing bond-breaking chemistry leading to the release of the alcohol substrates. Chapters 4 and 5 will explore the use of N-heterocyclic carbenes (NHCs) as a catalyst for the photochemical reduction of carbon dioxide. Previous experiments have demonstrated that NHCs can add to CO2 to form stable zwitterionic species known as N-heterocylic-2-carboxylates (NHC–CO2). Work presented in this text illustrate that the stability of these species is highly dependent on solvent polarity, consistent with a lengthening of the imidazolium to carbon dioxide bond (CNHC–CCO2). Furthermore, these adducts interact with excited state electron donors resulting in the generation of ion diradicals capable of converting carbon dioxide into formic acid.
Resumo:
The study of photophysical and photochemical processes crosses the interest of many fields of research in physics, chemistry and biology. In particular, the photophysical and photochemical reactions, after light absorption by a photosynthetic pigment-protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. Among the experimental approaches developed for this purpose, the advent of ultrafast transient absorption spectroscopy has become a powerful and widely used technique.[1,2] Focusing on the process of photosynthesis, it relies upon the efficient absorption and conversion of the radiant energy from the Sun. Chlorophylls and carotenoids are the main players in the process. Photosynthetic pigments are typically arranged in a highly organized fashion to constitute antennas and reaction centers, supramolecular devices where light harvesting and charge separation take place. The very early steps in the photosynthetic process take place after the absorption of a photon by an antenna system, which harvests light and eventually delivers it to the reaction center. In order to compete with internal conversion, intersystem crossing, and fluorescence, which inevitably lead to energy loss, the energy and electron transfer processes that fix the excited-state energy in photosynthesis must be extremely fast. In order to investigate these events, ultrafast techniques down to a sub-100 fs resolution must be used. In this way, energy migration within the system as well as the formation of new chemical species such as charge-separated states can be tracked in real time. This can be achieved by making use of ultrafast transient absorption spectroscopy. The basic principles of this notable technique, instrumentation, and some recent applications to photosynthetic systems[3] will be described. Acknowledgements M. Moreno Oliva thanks the MINECO for a “Juan de la Cierva-Incorporación” research contract. References [1] U. Megerle, I. Pugliesi, C. Schriever, C.F. Sailer and E. Riedle, Appl. Phys. B, 96, 215 – 231 (2009). [2] R. Berera, R. van Grondelle and J.T.M. Kennis, Photosynth. Res., 101, 105 – 118 (2009). [3] T. Nikkonen, M. Moreno Oliva, A. Kahnt, M. Muuronen, J. Helaja and D.M. Guldi, Chem. Eur. J., 21, 590 – 600 (2015).
Resumo:
Transportation research makes a difference for Iowans and the nation. Implementation of cost effective research projects contributes to a transportation network that is safer, more efficient, and longer lasting. Working in cooperation with our partners from universities, industry, other states, and FHWA, as well as participation in the Transportation Research Board (TRB), provides benefits for every facet of the DOT. This allows us to serve our communities and the traveling public more effectively. Pooled fund projects allow leveraging of funds for higher returns on investments. In 2010, Iowa led fifteen active pooled fund studies, participated in twenty-two others, and was wrapping-up, reconciling, and closing out an additional 6 Iowa Led pooled fund studies. In addition, non-pooled fund SPR projects included approximately 20 continued, 9 new, and over a dozen reoccurring initiatives such as the technical transfer/training program. Additional research is managed and conducted by the Office of Traffic and Safety and other departments in the Iowa DOT.
An Intervention Study to Improve the Transfer of ICU Patients to the Ward - Evaluation by ICU Nurses
Resumo:
Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.
Resumo:
In 2001 the International Law Commission finally adopted on second reading the Draft Articles on Responsibility of States for Internationally Wrongful Acts with commentaries, bringing to an end nearly 50 years of ILC work on the subject. This article reviews the final group of changes to the text, focusing on the definitions of ‘injury’ and ‘damage’, assurances of non‐repetition in the light of the