969 resultados para TOPOLOGY
Resumo:
A new inline coupling topology for narrowband helical resonator filters is proposed that allows to introduce selectively located transmission zeros (TZs) in the stopband. We show that a pair of helical resonators arranged in an interdigital configuration can realize a large range of in-band coupling coefficient values and also selectively position a TZ in the stopband. The proposed technique dispenses the need for auxiliary elements, so that the size, complexity, power handling and insertion loss of the filter are not compromised. A second order prototype filter with dimensions of the order of 0.05 lambda, power handling capability up to 90 W, measured insertion loss of 0.18 dB and improved selectivity is presented.
Resumo:
In this paper, we show how interacting and occluding targets can be tackled successfully within a Gaussian approximation. For that purpose, we develop a general expansion of the mean and covariance of the posterior and we consider a first order approximation of it. The proposed method differs from EKF in that neither a non-linear dynamical model nor a non-linear measurement vector to state relation have to be defined, so it works with any kind of interaction potential and likelihood. The approach has been tested on three sequences (10400, 2500, and 400 frames each one). The results show that our approach helps to reduce the number of failures without increasing too much the computation time with respect to methods that do not take into account target interactions.
Resumo:
The geometry of tree branches can have considerable effect on their efficiency in terms of carbon export per unit carbon investment in structure. The purpose of this study was to evaluate different design criteria using data describing the form of Picea sitchensis branches. Allometric analysis of the data suggests that resources are distributed to favour shoots with the greatest opportunity for extension into new space, with priority to the extension of the leader. The distribution of allometric relations of links (branch elements) was tested against two models: the pipe model, based on hydraulic transport requirements, and a static load model based on the requirement of shoots to provide mechanical resistance to static loads. Static load resistance required the load parameter to be proportional to the link radius raised to the power of 4. This was shown to be true within a 95% statistical confidence limit. The pipe model would require total distal length to be proportional to link radius squared but the measured branches did not conform well to this model. The comparison suggests that the diameters of branch elements were more related to the requirements for mechanical load. The cost of following a hydraulic design principle (the pipe model) in terms of mechanical efficiency was estimated and suggested that the pipe model branch would not be mechanically compromised but would use structural resources inefficiently. Resource allocation among branch elements was found to be consistent with mechanical stability criteria but also indicated the possibility of allocation based on other criteria, such as potential light interception by shoots. The evidence suggests that whilst branch topology increments by reiteration of units of morphogenesis, the geometry follows a functional design pattern.
Resumo:
Chan and Shapiro showed that each (non-trivial) translation operator acting on the Fréchet space of entire functions endowed with the topology of locally uniform convergence supports a universal function of exponential type zero. We show the existence of d-universal functions of exponential type zero for arbitrary finite tuples of pairwise distinct translation operators. We also show that every separable infinite-dimensional Fréchet space supports an arbitrarily large finite and commuting disjoint mixing collection of operators. When this space is a Banach space, it supports an arbitrarily large finite disjoint mixing collection of C0-semigroups. We also provide an easy proof of the result of Salas that every infinite-dimensional Banach space supports arbitrarily large tuples of dual d-hypercyclic operators, and construct an example of a mixing Hilbert space operator T so that (T,T2) is not d-mixing.
Resumo:
The helminth parasite Fasciola hepatica secretes cysteine proteases to facilitate tissue invasion, migration, and development within the mammalian host. The major proteases cathepsin L1 (FheCL1) and cathepsin L2 (FheCL2) were recombinantly produced and biochemically characterized. By using site-directed mutagenesis, we show that residues at position 67 and 205, which lie within the S2 pocket of the active site, are critical in determining the substrate and inhibitor specificity. FheCL1 exhibits a broader specificity and a higher substrate turnover rate compared with FheCL2. However, FheCL2 can efficiently cleave substrates with a Pro in the P2 position and degrade collagen within the triple helices at physiological pH, an activity that among cysteine proteases has only been reported for human cathepsin K. The 1.4-A three-dimensional structure of the FheCL1 was determined by x-ray crystallography, and the three-dimensional structure of FheCL2 was constructed via homology-based modeling. Analysis and comparison of these structures and our biochemical data with those of human cathepsins L and K provided an interpretation of the substrate-recognition mechanisms of these major parasite proteases. Furthermore, our studies suggest that a configuration involving residue 67 and the "gatekeeper" residues 157 and 158 situated at the entrance of the active site pocket create a topology that endows FheCL2 with its unusual collagenolytic activity. The emergence of a specialized collagenolytic function in Fasciola likely contributes to the success of this tissue-invasive parasite.
Resumo:
The human telomeric DNA sequence with four repeats can fold into a parallel-stranded propeller-type topology. NMR structures solved under molecular crowding experiments correlate with the crystal structures found with crystal-packing interactions that are effectively equivalent to molecular crowding. This topology has been used for rationalization of ligand design and occurs experimentally in a number of complexes with a diversity of ligands, at least in the crystalline state. While G-quartet stems have been well characterised, the interactions of the TTA loop with the G-quartets are much less defined. To better understand the conformational variability and structural dynamics of the propeller-type topology, we performed molecular dynamics simulations in explicit solvent up to 1.5 µs. The analysis provides a detailed atomistic account of the dynamic nature of the TTA loops highlighting their interactions with the G-quartets including formation of an A:A base pair, triad, pentad and hexad. The results present a threshold in quadruplex simulations, with regards to understanding the flexible nature of the sugar-phosphate backbone in formation of unusual architecture within the topology. Furthermore, this study stresses the importance of simulation time in sampling conformational space for this topology.
Resumo:
We adapt Quillen’s calculation of graded K-groups of Z-graded rings with support in N to graded K-theory, allowing gradings in a product Z×G with G an arbitrary group. This in turn allows us to use induction and calculate graded K-theory of Z -multigraded rings.
Resumo:
This paper presents an ultrafast wideband low-loss single-pole double-throw (SPDT) differential switch in 0.35 µ m SiGe bipolar technology. The proposed topology adopting current-steering technique results in a total measured switching time of 75 ps , which suggests a maximum switching rate of 13 Gb/s, the fastest ever reported at V-band. In addition, the switch exhibits an insertion loss lower than 1.25 dB and an isolation higher than 18 dB from 42 GHz to 70 GHz. © 2006 IEEE.
Resumo:
In a multiagent system where norms are used to regulate the actions agents ought to execute, some agents may decide not to abide by the norms if this can benefit them. Norm enforcement mechanisms are designed to counteract these benefits and thus the motives for not abiding by the norms. In this work we propose a distributed mechanism through which agents in the multiagent system that do not abide by the norms can be ostracised by their peers. An ostracised agent cannot interact anymore and looses all benefits from future interactions. We describe a model for multiagent systems structured as networks of agents, and a behavioural model for the agents in such systems. Furthermore, we provide analytical results which show that there exists an upper bound to the number of potential norm violations when all the agents exhibit certain behaviours. We also provide experimental results showing that both stricter enforcement behaviours and larger percentage of agents exhibiting these behaviours reduce the number of norm violations, and that the network topology influences the number of norm violations. These experiments have been executed under varying scenarios with different values for the number of agents, percentage of enforcers, percentage of violators, network topology, and agent behaviours. Finally, we give examples of applications where the enforcement techniques we provide could be used.
Resumo:
Analysis and synthesis of the new Class-EF power amplifier (PA) are presented in this paper. The proposed circuit offers means to alleviate some of the major issues faced by existing Class-EF and Class-EF PAs, such as (1) substantial power losses due to parasitic resistance of the large inductor in the Class-EF load network, (2) unpredictable behaviour of practical lumped inductors and capacitors at harmonic frequencies, and (3) deviation from ideal Class-EF operation mode due to detrimental effects of device output inductance at high frequencies. The transmission-line load network of the Class-EF PA topology elaborated in this paper simultaneously satisfies the Class-EF optimum impedance requirements at fundamental frequency, second, and third harmonics as well as simultaneously providing matching to the circuit optimum load resistance for any prescribed system load resistance. Furthermore, an elegant solution using an open and short-circuit stub arrangement is suggested to overcome the problem encountered in the mm-wave IC realizations of the Class-EF PA load network due to lossy quarter-wave line. © 2010 IEICE Institute of Electronics Informati.
Resumo:
The Class-EF power amplifier (PA) introduced recently has a peak switch voltage much lower than the well-known Class-E PA. However, the value of the transistor output capacitance at high frequencies is typically larger than the required Class-EF optimum shunt capacitance. As a result, softswitching operation that minimizes power dissipation during OFF-to-ON transient cannot be achieved at high frequencies. A novel Class-EF topology with transmission-line load network proposed in this paper allows the PA to operate at much higher frequencies without trading the other figures of merit. Closed-form formulations are derived to simultaneously satisfy the Class-EF impedances requirement at fundamental frequency, all even harmonics, and the first two odd harmonics as well as to provide matching to 50O load. © 2011 Institut fur Mikrowellen.
Resumo:
A parallel kinematic machine (PKM) topology can only give its best performance when its geometrical parameters are optimized. In this paper, dimensional synthesis of a newly developed PKM is presented for the first time. An optimization method is developed with the objective to maximize both workspace volume and global dexterity of the PKM. Results show that the method can effectively identify design parameter changes under different weighted objectives. The PKM with optimized dimensions has a large workspace to footprint ratio and a large well-conditioned workspace, hence justifies its suitability for large volume machining.
Resumo:
We restate the notion of orthogonal calculus in terms of model categories. This provides a cleaner set of results and makes the role of O(n)-equivariance clearer. Thus we develop model structures for the category of n-polynomial and n-homogeneous functors, along with Quillen pairs relating them. We then classify n-homogeneous functors, via a zig-zag of Quillen equivalences, in terms of spectra with an O(n)-action. This improves upon the classification theorem of Weiss. As an application, we develop a variant of orthogonal calculus by replacing topological spaces with orthogonal spectra.
Resumo:
Cucurbit[n]urils (CB[n]) are macrocyclic host molecules with subnanometer dimensions capable of binding to gold surfaces. Aggregation of gold nanoparticles with CB[n] produces a repeatable, fixed, and rigid interparticle separation of 0.9 nm, and thus such assemblies possess distinct and exquisitely sensitive plasmonics. Understanding the plasmonic evolution is key to their use as powerful SERS substrates. Furthermore, this unique spatial control permits fast nanoscale probing of the plasmonics of the aggregates "glued" together by CBs within different kinetic regimes using simultaneous extinction and SERS measurements. The kinetic rates determine the topology of the aggregates including the constituent structural motifs and allow the identification of discrete plasmon modes which are attributed to disordered chains of increasing lengths by theoretical simulations. The CBs directly report the near-field strength of the nanojunctions they create via their own SERS, allowing calibration of the enhancement. Owing to the unique barrel-shaped geometry of CB[n] and their ability to bind "guest" molecules, the aggregates afford a new type of in situ self-calibrated and reliable SERS substrate where molecules can be selectively trapped by the CB[n] and exposed to the nanojunction plasmonic field. Using this concept, a powerful molecular-recognition-based SERS assay is demonstrated by selective cucurbit[n]uril host-guest complexation.
Resumo:
The recent synthesis of a new hydrogen binary hydrate with the sH structure has highlighted the potential storage capabilities of water clathrates [T. A. Strobel, C. A. Koh, and E. D. Sloan, J. Phys. Chem. B 112, 1885 (2008) and A. R. C. Duarte, A. Shariati, L. J. Rovetto, and C. J. Peters, J. Phys. Chem. B 112, 1888 (2008)]. In this work, the absorption of hydrogen and the promoters used in the experimental work are considered using a simplified model for the host-guest interaction, which allows one to understand the stabilizing effects of multiple help molecules. Two further hypothetical clathrates, which are isostructural with known zeolite structures, are also investigated. It is shown that the energy gained by absorbing adamantane into these two frameworks is far greater than that gained upon absorption of adamantane into the sH structure. Hence, a clathrate with the same topology as the DDR (Sigma 1) zeolite may be synthesizable with adamantane and hydrogen as guest molecules as, in the conditions explored here, this phase appears to be more stable than the sH structure. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3142503]